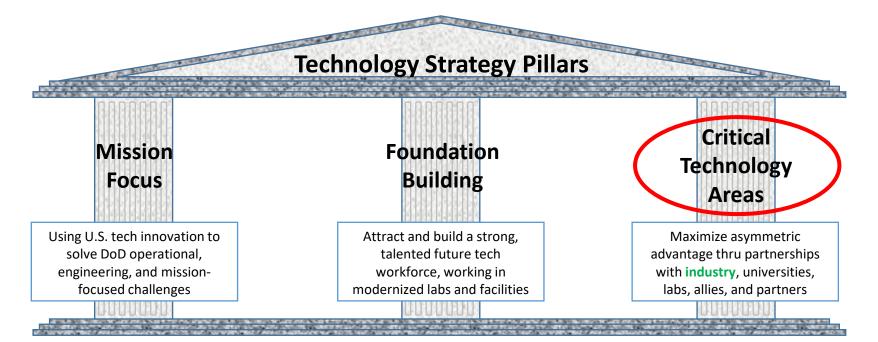
Software Assurance Roadmap

Mr. Steve Grice
Technical Director, Software Assurance

Mr. Bradley Lanford SAIC Contractor Support

Science and Technology Program Protection
Office of the Under Secretary of Defense for Research and Engineering

National Defense Industrial Association Systems and Mission Engineering Conference November 1-3, 2022


Software Assurance (SwA):

- The level of confidence that software functions only as intended and is free of vulnerabilities, either intentionally or unintentionally designed or inserted as part of the software, throughout the life cycle
 - PL112–239, JAN. 2, 2013, National Defense Authorization Act (NDAA) for Fiscal Year (FY) 2013, Section 933

Activities to Date

- Development of policies, instructions, guides, and standards to promote best practices
- Joint Federated Assurance Center (JFAC)
- JFAC Technical Working Group Community
- DoD/National Nuclear Security Administration (NNSA) Software Assurance Community of Practice
- Partnerships with Department of Homeland Security, NNSA, National Security Agency, and Industry thru NDIA

Ms. Heidi Shyu, Under Secretary of Defense for Research and Engineering, released "Technology Vision for an Era of Competition," (dated February 1, 2022) to provide guidance on those areas needing further technology investments.

UNDER SECRETARY OF DEFENSE

February 1, 2022

SUBJECT: USD(R&E) Technology Vision for an Era of Competition

The Office of the Under Secretary of Defense for Research and Engineering (OUSD(R&E) will spearhead a National Defense Science and Technology strategy for the Department of Defense. OED, informed by the 2022 National Defense Strategy (NDS) and structured around three strategie pillars: mission focus, foundation building, and succeeding through teamwork. This technology strategy will chart a course for the United States' military to strengthen its technological superiority amidst a global race for technological advantage.

To maintain the United States military's technological advantage, the Department will champion research, science, technology, engineering, and innovation. From the carliest days of this country the role of technology in shaping military concepts and providing for the defense of the nation has been essential. The demands of the present era call for new operational concepts, increasingly joint operations, and quickly fielding emerging science and technology concentrativities.

Strategic competitors to the United States have greater access to commercial state-of-theart technologies than ever before and can wield these technologies to be disruptive to America's interests and its national security. The challenges facing our country are both diverse and complex, ranging from sophisticated cyber-attacks to supply chain risks, and from defending against hypersonic missiles to responding to biological threats. In an ever shifting and fastmoving global environment, technological advantage is not stagnant and the Department cannot rely on today's technology to ensure military technological dominance tomorrow.

It is imperative for the Department to nurture early research and discover new scientific breakthroughs to prevent technological surprise. The Department must harness the incredible innovation ecosystem both domestically and globally in order to stay ahead of our competitors.

A. Innovation in an era of competition

The Department of Defense's Research and Engineering community welcomes cooperation and competition. As Secretary of Defense Austin said in his December 2021 speech at the Reagan National Defense Forum, "America isn't a country that fears competition. And we're going to meet this one with confidence and resolve." Competition has helped to bring about the United States' private sector and technology industry, both of which are the most vibrant in the world. Competition helped advance the space program, the seeds of modern information technology, and a myriad of derivative technologies that every day drive our national security and economic activity.



Strategic Vision *(continued)*

Critical Technology Areas

- Effective Adoption Areas
 - Trusted AI and Autonomy
 - Integrated Network Systems-of-Systems
 - Microelectronics
 - Space Technology
 - Renewable Energy Generation and Storage
 - Advance Computing and Software
 - Human-Machine Interfaces
- Seed Areas of Emerging Opportunity
 - Biotechnology
 - Quantum Science
 - Future Generation Wireless Technology (FutureG)
 - Advance Materials
- Defense-Specific Areas
 - Directed Energy
 - Hypersonics
 - Integrated Sensing and Cyber

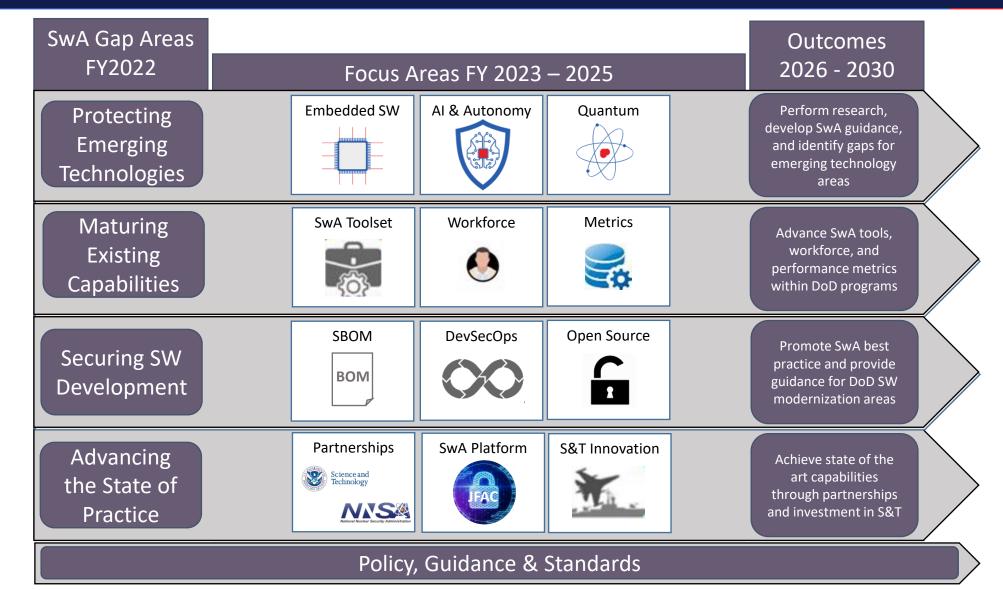
Current, Ongoing, and Relevant Topics

- Software Bill of Materials (SBOM)
 - Executive Order 14028, "Improving the Nation's Cybersecurity"
 - FY19 NDAA Section 1655: Mitigation of risks from disclosure to foreign adversaries
 - Enduring Security Framework, Securing the Software Supply Chain

DevSecOps

- DoD Instruction 5000.83, Technology and Program Protection, Program Protection Planning Outline and Guidance alignment with software modernization efforts
- Identifying best practice for automation of SwA methods and practices

Existing Tool Maturation


- Coordination with vendors, S&T organizations, and Service labs
- o PD Cyber and LLNL collaboration to evaluate tool landscape

Software Assurance Metrics

- Development of metrics to support policy and guidance implementation
- Nuclear Enterprise Assurance Workshop Metrics Track

Software Assurance Roadmap

Software Assurance Roadmap Emerging Technologies

Emerging Technology	Current Efforts	Short Term	Future	
Embedded SW	Gap: Limited Capability to analyze embedded SW NSA leading Hardware / Software Assurance Pilot	Identify capability gaps in labs ability to analyze embedded SW Document existing SW analysis and mitigation capabilities	Goal: Alignment of HW/SW protections for critical microelectronics	
Al & Autonomy	Gap: Limited understanding of SwA impacts and protections for AI & autonomy	Research and whitepapers on SW protections for AI/autonomy SwA for AI / Autonomy Pilot Program	Updates to AI /autonomy whitepapers based on Pilot Goal: Define SwA best practice for AI and autonomy	
Quantum	Gap: Limited understanding of SwA impacts and protections for quantum	Research and whitepapers on SW protections for quantum	SwA for Quantum Pilot Program Goal: Define SwA best practice for quantum	
	Additional technol	ogies added as prioritized by USD(R&E)		

Software Assurance Roadmap Maturing Existing Capabilities

Capability Elements	Current Efforts	Short Term	Future	
SwA Toolset	Gap: Programs do not have access to SwA tools to inform decision making and support analysis	Perform SwA tool and capability landscape study Define process for SwA tool selection and assessment process	Recommend and implement plan to make identified SwA tools accessible Goal: Inform program tool selection	
Workforce	Gap: Existing SwA expertise is limited and DoD lacks training for future growth	Develop DAU SwA Credential	Inclusion of SwA best practices in SW and cyber training Goal: Grow SwA expertise to support program needs	
Metrics	Gap: Lack of metrics to inform continuous improvements of SwA activities	NEA Workshop: Assurance Metrics Track DoD Assurance Metrics Pilot	Define core set of metrics Goal: Define core SwA metrics to support DoD programs	

Software Assurance Roadmap Securing Software Development

Secure Software	Current Efforts	Short Term	Future	
SBOM	Gap: Programs do not have processes, tools, or guidance to support SBOM requirements Supporting FAR Language Development	Perform SBOM Tool landscape study SBOM Assurance Pilot	Define infrastructure and process for SBOM ingest Goal: Support program implementation of EO 14028 SBOM requirements	
DevSecOps	Gap: DevSecOps guidance lacks software assurance	Develop DevSecOps Software Assurance implementation guide Perform Container Hardening Capability Landscape study	Provide SwA services to DSO community Goal: Integrate Swa best Practices in to DoD SW Modernization efforts	
Open Source	Gap: Lack of metrics to inform continuous improvements of SwA activities Development of Secure Open Source Recommendations Report	NEA Workshop: Assurance Metrics Track DoD Assurance Metrics Pilot	Define core set of metrics Goal: Define core SwA metrics to support DoD programs	

Software Assurance Roadmap Advancing the State of Practice

Advancement Opportunities	Current Efforts	Short Term	Future	
Partnerships Science and Technology NASSER Retional Nucleus Security Administration	Gap: DoD is not fully aligned with UGA on assurance approach and sharing NEW Workshop & DoD/NNSA SwA CoP	Develop Joint SwA Roadmap with DHS S&T, NSA, & NNSA	Goal: Align DHS S&T, NSA, & NNSA Assurance efforts to raise assurance posture across departments	
SwA Platform	Gap: SwA Resources have limited access to expertise and tools required to support programs Developing AoA for hosting of JFAC infrastructure	Deploy MVP of JFAC Infrastructure to support SwA analysis and tools Prioritize SwA tool offerings and develop timeline	Goal: Provide comprehensive SwA services to DoD programs	
S&T Innovation	Gap: DoD lacks awareness of and infrastructure to transition assurance S&T Coordination with DoD Assurance S&T organizations	Complete Assurance S&T Landscape Study Develop Investment Recommendations Report	Pilot assurance S&T transition Goal: Make S&T assurance capabilities available early to programs	

- Ms. Shyu's memo, "Technology Vision for an Era of Competition," provides clarity, intention, and direction for the future of the Office of the Secretary of Defense for Research and Engineering.
- DoD has seen great success with SwA tools, policies, instructions, and guidelines developed and provided to our community. However, the landscape is always changing:
 - Introduction of new development techniques and tools
 - Discovery of new vulnerabilities
 - Maturing S&T capabilities
- DoD is looking for input and feedback from NDIA and Industry on how to best address the tools of today and emerging technologies to ensure the U.S. warfighter's ability to counter threats both today and into the future.

Steven Grice

Technical Director, Software Assurance
Office of the Under Secretary of Defense
for Research and Engineering
steven.a.grice.civ@mail.mil

Bradley Lanford

SAIC Contractor Support

Office of the Under Secretary of Defense for Research and Engineering bradley.p.lanford.ctr@mail.mil