

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND ARMAMENTS CENTER

Laser Ignition – A New Hope

SEP 24, 2024

Controlled by:	US Army, DEVCOM
Controlled by:	CCDC-ACM-FF, Fuze Division
CUI Category:	UNCLASSIFIED
Distribution Statement:	Distribution A: Distribution Unlimited
POC:	Stephen Redington, 520-941-0788

UNCLASSIFIED

• Who Are We?

- Fuze Technology Prototype Advancement Center FTPAC
 - AKA the Fuze Development Center (FDC)
 - Energetics Assembly and Testing Facility
 - Electro-Mechanical Fab and Assembly Facility
 - Electromagnetic Environmental Effects (E³) Testing Facility

• What Are We?

- A state-of-the-art Electro-Mechanical Fabrication and assembly line with energetics handling and E³ evaluation capabilities
- Representative of a typical full service modern Contract Manufacturer
- Focused on process and documentation. Repeatable results are our objective.

• What Do We Do?

- Support the R&D mission by fabricating prototypes and hardware for fuze, munitions and other military applications
- Our mission is not manufacturing but to make it manufacturable.

OVERVIEW

- Introduction
- A Brief History
- The Potential for Laser Ignition
 - -Automotive Industries
 - -Aerospace Industries
 - -Commercial Markets
- New Interests / Motivations
 - -Micro Thrusters / Impulse Engines
 - -Rocket Motor Igniters
 - -CAD / PAD applications
- The Future

Laser Ignition – A New Hope

INTRODUCTION

•What is laser ignition?

-The transformation process of a combustible material, from an unreactive state to a self-propagating state, where the ignition source can be removed without extinguishing the combustion process [1].

P.D. Ronney
 Laser versus conventional ignition of flames
 Optical Engineering, 33 (1994), pp. 510-521

INTRODUCTION

- Why is it desirable?
 - -Safer
 - Separation of input energy from output energy by means of photonic transduction (i.e. no physical contact).
 - ➢Non-linear (diode) response provides a clearly defined energy barrier unlike linear (resistive) response that has a large 'grey zone'.

- More manufacturable

- >No fragile bridge wires. Minimal touch labor
- >Can utilize standard electronics automated assembly processes

- More Reliable

≻Can be 100% tested

Laser Ignition – A New Hope

DEMONSTRATED SUCCESSES (IN ORDER)

- Direct 155mm propellant initiation without a primer (megawatt laser)
- Laser ignition of metastable intermolecular composite (MIC)
- 30mm primer replacement
- Laser ignition of black powder
- M123 primer replacement
- Laser ignition of M6 blasting cap
- Laser ignition of zirconium and potassium perchlorate (ZPP)
- Laser Squib initiator

Laser Ignition – A New Hope

BARRIERS TO ENTRY

- Culture
 - -Incentive to proceed is lacking
 - If it ain't broke, don't fix it.
- Business case

-High startup unit cost vs an established mass-produced unit cost is difficult to justify

- No production history
 - -Risk vs reward

TIMES ARE CHANGING

- Culture
 - -My supply chains are breaking. I need to fix it.
 - -They don't make that anymore. I need something new
- Business case
 - -Supply chain issues are making schedule and cost a significant problem
 - -Manual labor / skill is becoming a problem
 - -I really need HERO safety
- No production history
 - -Maybe the risk is acceptable since I can't get what I need now

Laser Ignition – A New Hope

- Hazards of Electromagnetic Radiation to Ordinance (HERO) Safe
- -Eliminates fragile bridgewire
- Friendly to fully automated assembly
- -100% testable
- -Successfully tested in 2023 at AETC
- Used in Cartridge Actuated Devices / Percussion Actuated Devices (CAD / PAD)
- Used in fire suppression systems

Laser Ignition – A New Hope LASER IGNITED THRUSTERS

- Reuse 30mm primer technology
- Provides HERO safety
- Modular construction
- Delivers a single impulse for in flight maneuvers
- -Fast initiation (~100 uS)

Laser Ignition – A New Hope LASER IGNITED THRUSTERS

Impulse Measurement

Laser Ignition – A New Hope LASER IGNITED THRUSTERS

THRUSTER TEST FIXTURE

Laser Ignition – A New Hope

LASER IGNITED M82 PRIMER

- Potential alternate to production
 M82 primers that are in short
 supply due to supply chain issues.
- Investigated as an alternate primer for use at US based test ranges to free up M82 primers for the field
- Much simpler construction
 - -Lower cost
 - More reliable
- Would require minor gun platform upgrade
 - Electric vs Percussion

Laser Ignition – A New Hope AIRCRAFT COUNTERMEASURE FLARES

- Potential alternate to production M796 primers.
- -Improved reliability in high vibration environments
- Friendly to fully automated assembly
- -100% testable preassembly
- Pre function continuity check
- -Post function confirmation check

Laser Ignition – A New Hope

- Potential alternate to production M123 primers that are difficult to procure due to supply chain issues.
- -Viability demonstrated in 2019
- -Much simpler construction
 - -Lower cost
 - More reliable
- -Would be drop in replacement

QUESTIONS?

THANK YOU.

For more information feel free to contact:

Stephen Redington: stephen.h.redington.civ@army.mil DEVCOM Fuze Division POC: sean.w.beighley.civ@army.mil

Distribution Statement A: Distribution Unlimited