27th Annual Systems and Mission Engineering Conference

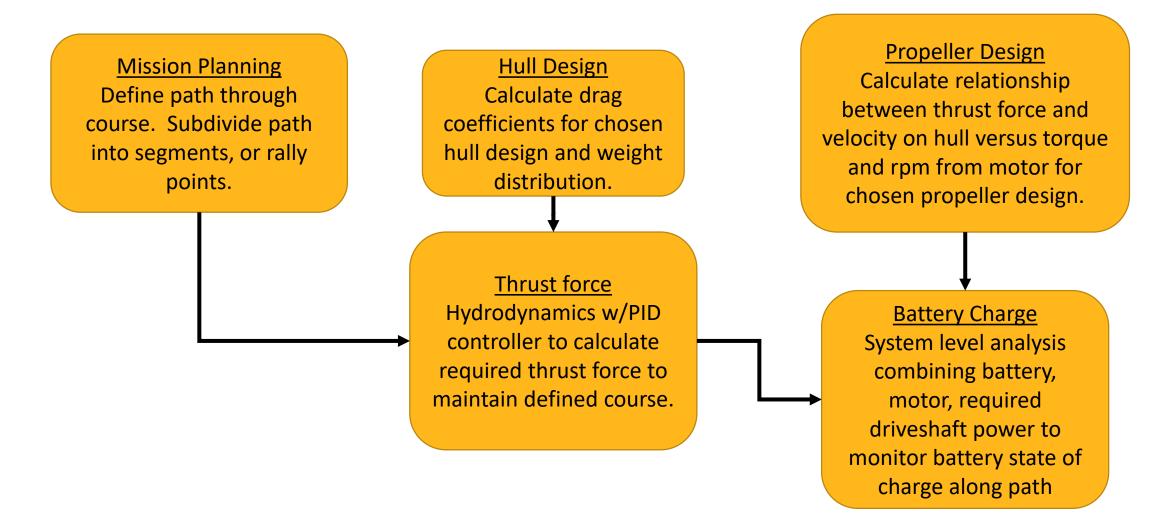
Digital Transformation across the lifecycle for Mission Success

NSVS

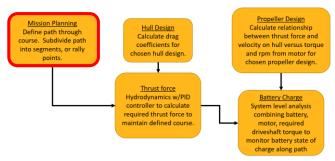
Powering Innovation That Drives Human Advancement

Electric Ship Drivetrain – Virtual Design for Mission Success

Craig Miller, PhD Jose Luis Gonzalez Hernandez, PhD 29-October 2024


- Extensible physics based simulation workflow to enable
 - System planning, monitoring and execution
 - Sub-system trade-off exploration: hull, motor, battery, propeller
- Components of the simulation workflow
 - Path definition on imported map
 - Calculate thrust and velocity to navigate defined path
 - Relate hull thrust and velocity to propeller power
 - Monitor battery state of charge along path

High Level Workflow



©2024 ANSYS, Inc.

UNCLASSIFIED. Distribution A, approved for public release.

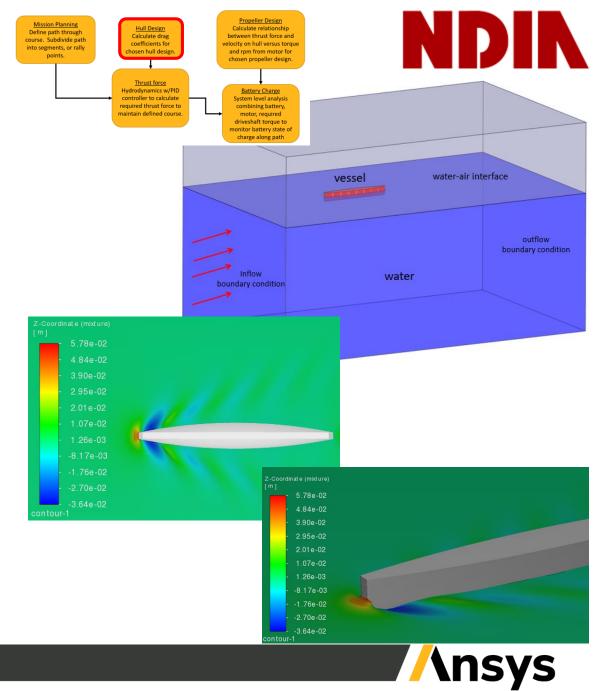
• STK propagators for path

- Define position, speed and acceleration on an imported map
- Visualize path and create reports for metrics of

- Generate reports

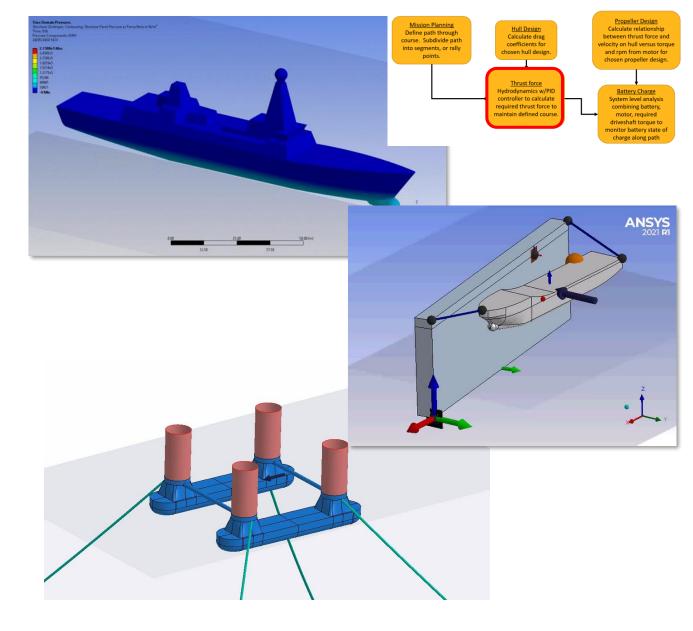
interest

	GreatArc StkExternal RealTime & 0.000 EpSec & 199.975 EpSec				ΔI+;	titude Reference			
Start:					-		-		
Stop:						Reference:	MSL	~	
Update Map Graphics						Granularity:	0.621349	Əmi 👜	Terrain Resol
Route Calculation Method: Smooth Rate					 In 	terp Method:	MSL Hei	ght 🗸	0.000 mi
Latitud	de	Longitude	2	Altitude	Speed	Accel	Time	Turn Radii	15
36.83666546 deg		-76.37188415 deg		0.0000000 mi	0.01388889 mi/sec	0.00000000	000000 0.000 0.00000		mi
36.83694264 deg		-76.36917400 deg		0.00000000 mi	0.01388889 mi/sec	0.00000000	10.903		
36.83701076 deg					0.01388889 mi/sec			0.00000000	
		-76.36621108		0.00000000 mi	0.01388889 mi/sec	0.00000000	22.855	0.00000000	mi
36.8375897	2 deg	-76.36484883	dea	0.00000000 mi	0.01388889 mi/sec	0.00000000	28.548	0.00000000	mi
36.8381346	3 deg	-76.36386118	deg	0.00000000 mi	0.01388889 mi/sec	0.00000000	33.329	0.00000000	mi
36.8389179	2 deg	-76.36314600	deq	0.00000000 mi	0.01388889 mi/sec	0.00000000	38.153	0.00000000	mi
36.8399055	i6 deg	-76.36270327	deg	0.00000000 mi	0.01388889 mi/sec	0.00000000	43.365	0.00000000	mi
36.8409953	7 deg	-76.36239676	deg	0.00000000 mi	0.01388889 mi/sec	0.00000000	48.912	0.00000000	mi
36.8409613	1 deg	-76.36273732	deg	0.00000000 mi	0.01388889 mi/sec	0.00000000	50.282	0.00000000	mi
36.8404504	7 deg	-76.36311194 0	deg	0.00000000 mi	0.01388889 mi/sec	0.00000000	53.226	0.00000000	mi
36.8401439	6 deg	-76.36328223	deg	0.0000000 mi	0.01388889 mi/sec	0.00000000	54.892	0.00000000	mi
36.8393947	'1 deg	-76.36382713	deg	0.0000000 mi	0.01388889 mi/sec	0.00000000	59.201	0.00000000	mi
36.8389179	2 deg	-76.36433798	deg	0.0000000 mi	0.01388889 mi/sec	0.00000000	62.325	0.00000000	mi
36.8384411	3 deg	-76.36491694	deg	0.0000000 mi	0.01388889 mi/sec	0.00000000	65.633	0.00000000	mi
36.8381005	7 deg	-76.36573429	deg	0.0000000 mi	0.01388889 mi/sec	0.00000000	69.307	0.00000000	mi
36.8379984	0 deg	-76.36631325	deg	0.0000000 mi	0.01388889 mi/sec	0.00000000	71.672	0.00000000	mi
		-76.36709656	deg		0.01388889 mi/sec			0.00000000	
26 02770 40	L 3/	76 16774161 .		0.0000000:	0.01200000:/	0.0000000	77 471	0.0000000	



©2024 ANSYS, Inc.

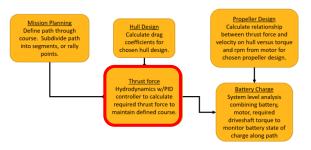
UNCLASSIFIED. Distribution A, approved for public release.

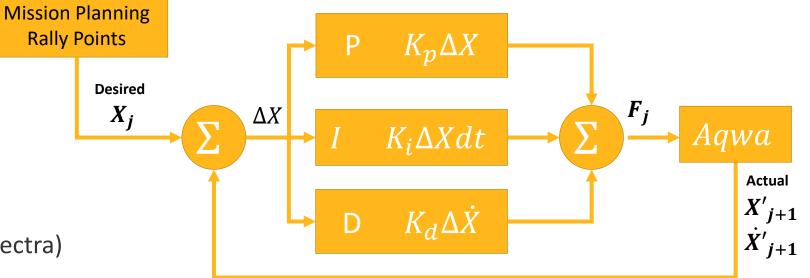

Vessel Hydrodynamics using CFD Drag Coefficients

- The hydrodynamics simulation uses steady-state mode and a multiphase approach has been used to capture air and water interaction at the interface.
- Both the hull design and weight distribution are considered and will affect the drag.
- Since the flow involves the presence of a free surface between water and air, we have used the volume of fluid (VOF) formulation and the open channel boundary conditions.
- This model predicts wave propagation, free surface behavior, resistance (pressure and viscous) forces and drag coefficient.

Vessel hydrodynamics Thrust Force

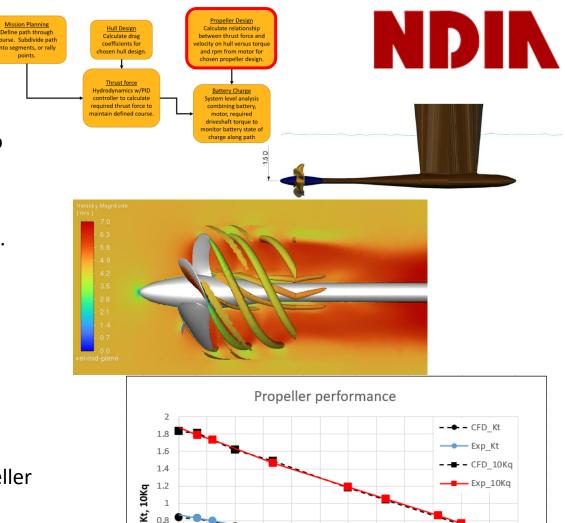
- Vessel hydrodynamics based around three-dimensional diffraction/radiation methods is used for thrust force and velocity along charted course
- Very efficient and fast compared to CFD with same level of accuracy
- Ansys Aqwa provides a modern engineering toolset for the investigation of the effects of wave, wind and current on floating and fixed offshore and marine structures





©2024 ANSYS, Inc.

- Model inputs
 - Vessel geometry
 - Mass properties
 - Drag coefficients
 - Rally points
- Environment inputs
 - Wave characteristics (direction, spectra)
 - Current, wind characteristics
- Time, frequency domain results
 - Motion (6DOF): Location, Velocities, Accelerations
 - Forces: Wave, Thrust, Drag



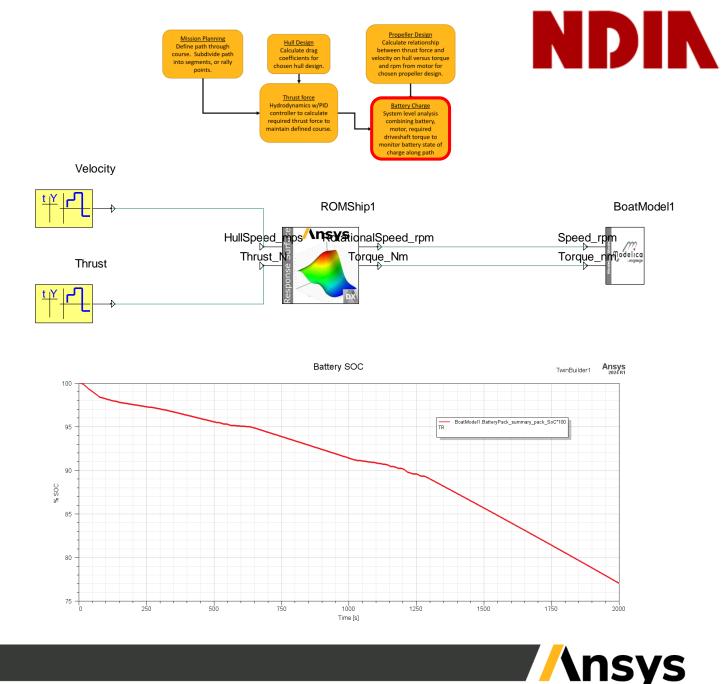
$\begin{array}{c} \mathsf{Propeller} \leftrightarrow \mathsf{Hull} \\ \mathsf{Angular} \ \mathsf{to} \ \mathsf{Linear} \ \mathsf{Power} \ \mathsf{Relationship} \end{array} \end{array}$

- Relate the power from the motor (torque * ω) to the power needed to navigate the ship (thrust force * velocity) across operating conditions
- The Potsdam Propeller Test Case (PPTC) [1] is simulated and results are validated against experimental data [2]. The propeller model is VP1304.
- The experiment [2] was an open water test in *pull* configuration. The thrust, torque, number of revolutions, and the inflow speeds are measured throughout the tests and results are compared to CFD simulations using Ansys Fluent.
- The comparisons are performed for thrust coefficient (KT) and torque coefficient (KQ) with different propeller advance ratio (J).
- The boat speeds studied in this work range from 0.5-4.5 m/s and propeller rotational speed of 600 and 900 rpm. A reduced order model (ROM) is extracted representing the transfer function between linear and angular power

[1]: <u>https://www.sva-potsdam.de/en/pptc-smp11-workshop/#openwater</u>
[2]: https://www.sva-potsdam.de/wp-content/uploads/2016/04/SVA_report_3752.pdf

 $\frac{V}{2}$; $K_T = \frac{1}{2 n^2 D^4}$; $K_Q = \frac{1}{\rho n^2 D^4}$

05

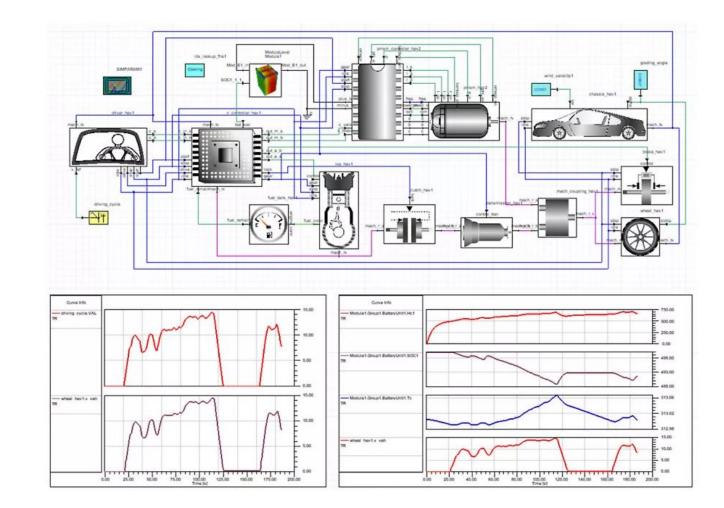


©2024 ANSYS, Inc.

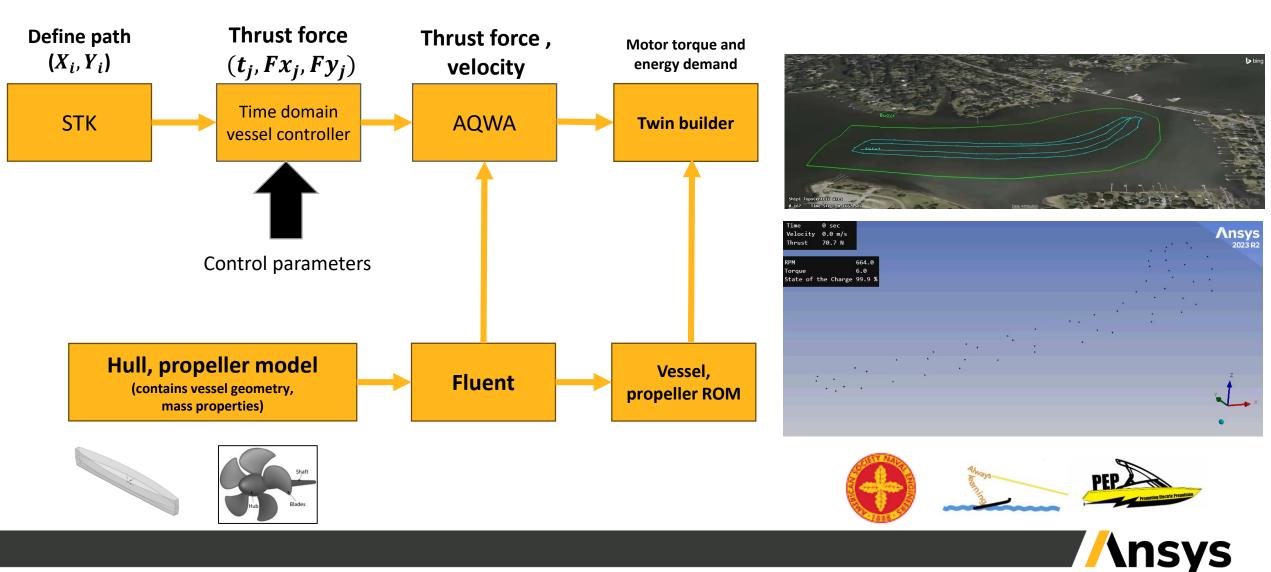
0.6

System Simulation

- Input thrust and velocity time history
- Linear vs Angular Power ROM
- Boat Model
 - Motor
 - Inputs: Electrical Load
 - Outputs: Torque (average during segment)
 - Battery
 - Inputs: Capacity, initial charge, load/power demand
 - Outputs: State of charge, voltage, temperature



Extend System Simulation to Digital Twin



- Calibrate system model using T&E data
- Instantiate calibrated system model for each physical asset in the field
- Feed digital models data from each asset
 - Manage thermal issues
 - Create battery mgmt. systems
 - Mission planning
- https://www.ansys.com/blog/chargeup-ev-development-with-battery-digitaltwins

Electric Boat – Virtual Planning, Monitoring and Execution

ND

