

Comprehensive Risk Assessment Methodology for Extended Product Lifecycles

Presenter: AJ Schultheis

Co-Authors: Jeremy Doerr, Iqbal Ahmed

Contributors: Dr. Valerie Sitterle, Jason Stroup, Dr. Craig Arndt, Dr. Santiago Balestrini, John Stephens

Introduction

Georgia Tech Research Institute (GTRI) is celebrating its 90th Anniversary!

- As a University Affiliated Research Center (UARC) we provide "white hat" support for the Defense community through a wide spectrum of research initiatives.
- Part of GTRI's mission is to advance technology and provide innovative solutions to benefit national security
 - Our Division provides Systems Engineering Research support to decision makers for a variety of US Defense Programs
- Research Engineer in the Systems Engineering Research Division
 - Focus on enterprise architecting, model-based mission engineering
- Managing Risk is an essential role of the Systems Engineer, but understanding Risk is essential to all stakeholders
 - Translating Risks across domains is critical to providing decision makers at all levels of the enterprise the ability to ensure mission success

Overview

Risk is inherent in every product development cycle

- The Defense Community has a well understood process for identifying, assessing and managing risk in system acquisitions, however it doesn't translate well across domains
- In Systems Engineering, we talk mostly about the roles of the Acquirer and Supplier
 - For this brief I will refer to these roles collectively as the Developer
- From an Operator's perspective, the definition of Risk is much different
- In both cases, Risk should ideally be projected over the full product lifecycle in order to prioritize decisions in a timely manner

Research Institute

Challenges

The traditional approach to Risk Management focuses mainly on the role of the Developer: Cost, Schedule, Technical Performance

Operators (Users) focus on their ability to successfully execute their Mission (Task)

- Defined by Readiness,
 Effectiveness, Survivability,
 Maintainability, Safety, etc.
- Projections of these measures are based on needs communicated to Developers and their anticipated timelines for realization of new capabilities

SOURCE: RAND analysis of DRRS-S information.

NOTE: C = resource readiness level; min = minimum; P = personnel; R = equipment condition; S = supplies on hand; T = training of personnel; Y = yes; Q = qualified yes; N = no; CORE = Core Mission Essential Task List; OPLAN = operation plan; ops = operations.

Correlating Operator Risk to Developer Risk

Operators are the key to generating Demand for new Systems

- When Operations identifies a new Threat (i.e. capability need), this will create a gap in their Readiness (i.e. ability to execute their mission) and create a Demand
- This Demand will begin a process to identify requirements for a new Development effort
- The Demands from Operators can change throughout the Product Lifecycle and have a tremendous impact on System Requirements
- Similarly, if the Developer identifies a Risk, it must feed forward into the Operator's Readiness analysis to inform decisions on capability deployment
- This process is analogous to many Demand/Supply cycles found in commercial industries

Based on https://www.rand.org/pubs/research_reports/RRA315-1.html

Operations Planning

Further complicating matters, Operators often create multiple strategies for neutralizing potential Threats

- Developing multiple potential Courses of Action (COA) ultimately reduces the overall risk for Mission success
- Potential COAs may include:
 - 1. Develop a new Capability
 - Most Risk due to Expense & Schedule
 - 2. Modify an existing Capability
 - Moderate Risk since some of the Sol is already available
 - 3. Produce more of an existing Capability (i.e. brute force method)
 - Least Risk but the Least Elegant solution
- Each COA drives new requirements to different Development teams

	descr	dev risk	ops risk
CO <i>A</i> #1	make	high	low
CO4#2	modify	moderate	moderate
c04#3	Ьиу	low	high

Our exemplar

- The appearance of the Borg highlighted a gap in Starfleet capabilities
 - The existing fleet could not rapidly amass to respond to a sudden threat
- Existing ships could not fill the gap
 - Resource-intensive to produce and upkeep
 - Massive crews
- A new class of ship was needed the Defiant Class
 - Weaponry equivalent to the largest Starfleet ships, in a hull ~1/20th the volume
 - Highly performant propulsion, enabling rapid response without large numbers of ships
 - Only combat-related systems, reducing crew compliment ~90%
 - Small size, reducing the burden of production and sustainment

Developer vs Operator Risk examples

Throughout the storied history of the USS Defiant, the Core Mission (i.e. Operational Need) changed dramatically over its lifecycle:

- Originally designed to address the Borg (ca. 2366)
- Repurposed for Dominion Conflict (ca. 2371)
- Redirected to battle the Klingons (ca. 2372)
- Deployed for the resurgency of the Borg (ca. 2373)

Similarly, Developer Risk also evolves over time:

- During initial testing, the Defiant exhibited some Structural Integrity issues
 - These issues rendered the Warp Drive effectively useless and ultimately led to the ship being mothballed
- Ablative Armor (low TRL) was installed without widespread adoption by the Fleet
- A Romulan Cloaking Device was integrated but due to the ship's normal power consumption never worked properly

Ontology

A fit-for-purpose Ontology had to be created to enable this capability in a model-based (i.e. SysML) format

- This ontology is largely based on the DoD's Risk, Issues & Opportunities (RIO) Guide, however some liberties had to be taken to reduce ambiguity
- Considered using Risk Analysis
 and Assessment Modeling Language (RAAML)
- Key Features include:
 - Identifies both risks (i.e. negative outcomes) and opportunities (i.e. positive outcomes)
 - Treatments (i.e. mitigations) are bundled into Plans to enable Trades & Reuse
 - Tracks Predictions & Actual Outcomes
- This is still very much a work in progress
 - Several additional properties will be added as research continues

Custom Risk Profile

Common, reusable and shareable implementation throughout a set of models

- Scaled rating system which can trace to specific or calculated impacts
- Created from UML to support multiple modeling languages, including UAF

Risk Viewpoints

Common views within the model will communicate to different stakeholders

- Diagrams were created to address specific relationships between Functional Elements, System Elements, and discrete RIO Situations
- · Understanding the relationships between like elements is also critical

Aggregation

To achieve a Comprehensive Risk Methodology, all risks must be aggregable

- RIO Situations can be aggregated within the Sol's WBS hierarchy
- Different levels of aggregation speak to different levels of hierarchy within the stakeholders' organizations

Risk Evolves Over Time

Key aspect of this research is to provide a means of characterizing Risk over Time

- Balance the need to make decisions made today vs some day in the future
- Compare multiple COAs and their projected impact on Mission success
- Conceptually, this capability is understood however SysML v1 doesn't handle time-based criteria well
 - SysML v2 has better capabilities for temporal viewpoints

Next Steps

- Develop specific viewpoints to address concerns of the operator
- Integrate temporal assessment functionality
- Create quantifiable relationships to other risk categories
- Implement dynamic views to allow "what-if" tradespace analysis
- Product Program/portfolio viewpoints for each category of risk
- Adapt the methodology to SysML v2 once it is mature enough for widespread use

