Supporting Systems Engineering Modernization

Where 15288 meets Lean Agile

Jordan Stoner, Agile Coach Kelli Houston, Associate Technical Fellow

Copyright 2024 Lockheed Martin Corporation

Meeting the Challenge

Emerging Threats

Whole of nation competition: military, economic, and political

Proliferation of advanced technologies in all domains

To succeed we need to change

Systems Engineering Modernization

SE Modernization Overview

SE Modernization Problem Statement

"There is a **lack of an integrated approach** to implementation of SE Focus Areas that **is creating a delay in full implementation of the Digital Transformation** which is necessary to ensure the relevant guidance, skills, and training are available to deliver a robust, disciplined approach to weapon systems acquisition."

Agile Open SW-AGILE, DevSecOps SE Modernization MOSA* MISSION ENGINEERING Collaborating with Government, Industry & Academia

Digital

DIGITAL

ENGINEERING (M&S)

- International Council on Systems Engineering (INCOSE)
- Defense Acquisition University (DAU)
- National Defense Industrial Association (NDIA)
- Systems Engineering Research Center (SERC)

Distribution Statement A. Approved for public release. Distribution is unlimited. Cases # 22-S-0026 & 23-S-1760

https://www.cto.mil/sea/se/

DoD is driving Systems Engineering Modernization

Supporting Systems Engineering Modernization

Advancing the Engineering practice

Continuous modernization

Delivery of high quality, safe, secure, reliable systems

Delivering value to the warfighter

"A world-class engineering culture requires an engineering capability that adapts and mitigates evolving threats faster than the opposition can produce them."

- Paul Mann, Chief Engineer, Assistant Secretary of the Navy for Research, Development, and Acquisition.

Enhance cross-organizational capability to ensure mission readiness and sustainability

The Power of Agile and Systems Engineering

÷

Systems Engineering

Ensures alignment, coordination and integration across the enterprise Agile

Focus on adaptability, fast feedback, and rapid decision-making

Responsive, scalable, and innovative solutions

Enhanced efficiency through streamlined processes and increased collaboration

Reduced risks

Enhanced scalability and flexibility

Systems Engineering: Leading the Shift from Waterfall to Agile Across All Disciplines

©ISO. This material is reproduced from ISO/IEC/IEEE 15288:2023 with permission of the American National Standards Institute (ANSI) on behalf of the International Organization for Standardization. All rights reserved.

ISO/IEC/IEEE 15288:2023 process

Intersection of 15288 and Lean Agile

Customer Centricity Economic View Apply systems thinking Assume variability and preserve options Build incrementally Objective evaluation of working systems Make value flow Apply cadence and synchronization Intrinsic motivation Decentralize decision making Organize around value

Enabling responsiveness to change

Intersection of 15288 and Lean Agile

Customer Centricity **Economic View** Apply systems thinking Assume variability and preserve options Build incrementally Objective evaluation of working systems Make value flow Apply cadence and synchronization Intrinsic motivation Decentralize decision making Organize around value

Enabling responsiveness to change

Reference: Johnson and Yeman. (2023). Industrial DevOps. IT Revolution.

Intersection of 15288 and Lean Agile

Mission Analysis Stakeholder Analysis Requirements Development Architecture **Design Analysis** Implementation Integration Verification Transition Validation Operation Maintenance Disposal

Customer Centricity **Economic View** Apply systems thinking Assume variability and preserve options Build incrementally Objective evaluation of working systems Make value flow Apply cadence and synchronization Intrinsic motivation Decentralize decision making Organize around value

Enabling responsiveness to change

Approved for Public Release

Reference: Johnson and Yeman. (2023). Industrial DevOps. IT Revolution.

The intersection of 15288 and Lean Agile

Customer Centricity **Economic View** Apply systems thinking Assume variability and preserve options Build incrementally Objective evaluation of working systems Make value flow Apply cadence and synchronization Intrinsic motivation Decentralize decision making Organize around value

Enabling responsiveness to change

Approved for Public Release

Reference: Johnson and Yeman. (2023). Industrial DevOps. IT Revolution.

Shift left

Key Takeaways

- 1. If you are already doing systems engineering, you are probably further along than you think.
- 2. Start with "what problem you are trying to solve"
- 3. Systems Engineers are well positioned to drive change across the enterprise

NDIA SED ADAPT working group

Call to Action

- 1. Learn more. Read the "Supporting Systems Engineering Modernization -Where 15288 meets Lean Agile" white paper (coming Q1 2025)
- 2. Apply what you've learned
- 3. Engage with the NDIA SED ADAPT working group

Be a catalyst for the change ahead

Questions?

