
© The Aerospace Corporation, 2024

Key Modeling Principles

to Moderate the Growth of

Model Technical Debt in MBSE

Ryan Noguchi

The Aerospace Corporation

2024 NDIA Systems & Mission Engineering Conference

October 2024

Approved for public release. OTR-2024-01193.

1
Approved for public release. OTR-2024-01193.

The Technical Debt Concept

The technical debt concept from software is valuable for descriptive models… with modification

• Technical debt is a well-known concept in the software domain:

– A metaphor for development or sustainment costs that have been deferred to the future (Cunningham, 1992)

• Technical debt represents the deferred cost of repair, rework, or replacement of a product that

wasn’t built perfectly from the beginning

– Technical debt is “created when developers violate good architectural or coding practices, creating

structural flaws in the code” (Curtis et al. 2012a)

• Much research and evolution of practice in software development is focused on managing

technical debt

– Reducing its growth

– Burning it down
Cunningham, W. (1992). The Wycash portfolio management system, in Addendum to

the Proceedings of Object-Oriented Programming Systems, Languages, and

Applications (OOPSLA), ACM Press.

Curtis, B., Sappidi, J., & Szynkarski, A. (2012a). Estimating the Size, Cost, and Types

of Technical Debt. 3rd International Workshop on Managing Technical Debt.

2
Approved for public release. OTR-2024-01193.

Principal in Technical Debt

Principal is the cost of “doing it right” now, which one is deferring for whatever reason

• In financial debt, principal is the amount of capital borrowed

– i.e., the cost to purchase something now to avoid incurring debt

• In software, the equivalent of principal is the additional cost of creating an optimal implementation

over creating a suboptimal implementation

– i.e., principal represents the cost to “do it right,” paying the full cost now rather than deferring that cost

3
Approved for public release. OTR-2024-01193.

Interest in Technical Debt

Interest is (part of) the cost of deferring full payment until later

• The technical debt equivalent of interest is the additional cost needed to rework the

implementation to accommodate the current context

– i.e., it represents the cost to “make it right” by paying off the debt later

• The interest that needs to be paid typically increases with time

– As the implementation grows, the amount of rework needed also grows due to replication and

propagation of dependencies

• Rework cost can manifest in greater difficulty to extend, maintain, or evolve the implementation

• However, it is also possible that the debt never needs to be repaid

– i.e., the rework is not needed, since that component is no longer needed

– Or the context has changed sufficiently to avoid the need for rework

4
Approved for public release. OTR-2024-01193.

Taxes in Technical Debt

Taxes are transactional costs resulting from suboptimal implementation

• In the financial domain, taxes often manifest as added costs on transactions

• In the software domain, taxes represent additional costs imposed on the day-to-day work of

developers or users that result directly or indirectly from the suboptimal implementation

– Having to “work around” convoluted code

– Users suffering clunky or unintuitive user interfaces

– Unlike interest, these are generally transactional costs

• Imposed only when developers or users need to use that code

– Result in lost productivity and lost value

• Often, in the software domain, the notions of interest and taxes are conflated or combined

– However, these possess very different mechanisms and patterns of growth and manifest very differently

to developers and users

5
Approved for public release. OTR-2024-01193.

Why—or Why Not—Technical Debt?

Today’s technical debt might appear or disappear overnight

• The goal is not really to eliminate debt

• Rather, the goal is to make better-informed choices about what debt to take on or to pay off

– Debt is often a good investment, providing opportunities that would otherwise be unavailable

– Accrued debt can be paid out sooner or deferred

• Unlike financial debt instruments, technical debt is generally not deterministic

– What constitutes technical debt will change over time as the context changes

– If a portion of the product is eliminated, the rework associated with that portion may never materialize

– Was once technical debt may no longer be as significant

– What wasn’t technical debt before has now become technical debt

• Therefore, technical debt is a fluid characterization that evolves over time because of the

continually evolving context and its implications on the need for payment of the debt

6
Approved for public release. OTR-2024-01193.

The (Different) Calculus of Technical Debt in Descriptive Models

The increased risk and impact of technical debt in descriptive models results in greater value of cautious

architectural decision making to control the growth of technical debt more conscientiously

• The cost of rework of models is often substantially greater than it is for software

– Model rework is more often architectural in scope and nature

– Model rework is more pervasive, invasive, interdependent, and difficult to perform than with software

– Implementation details of descriptive models are fully exposed to users

– Refactoring of models is much less amenable to piecemeal scheduling

• The model is internally inconsistent from the start of the first change to the end of the last change

– Automated discovery of need for refactoring is often difficult

• Particularly when driven more by semantics than syntax

• If a model defect is not corrected, it can multiply and spread to other parts of the model

– In the software technical debt domain, this is called “contagion” (Bi at al., 2021; Martini & Bosch, 2015)

Bi, F., Vogel-Heuser, B., Huang, Z., & Ocker, F. (2023). Characteristics, Causes, and Consequences of Technical Debt

in the Automation Domain. Journal of Systems and Software, v. 204.

Martini, A. & Bosch, J. (2015). The Danger of Architectural Technical Debt: Contagious Debt and Vicious Circles.

12th Working IEEE/IFIP Conference on Software Architecture.

7
Approved for public release. OTR-2024-01193.

Characterizing Model Technical Debt

These factors influence the risk assumed when one makes architectural or implementation decisions that reflect

the potential of increasing technical debt

• The growth of interest and taxes as the model matures can be characterized by a few critical factors:

Scale/Growth • How many model elements are affected?

• Are these very common items?

• Are these used in many different ways in the model?

Propagation • How quickly will these impacts indirectly propagate through the model?

• How quickly do the impacts “jump species” in the model?

Rework • How difficult is executing the rework?

• How difficult is finding what needs to be reworked?

• How independent is the rework process?

Use Taxes • What are the impacts or taxes?

• Is the impact isolated in time or recurring many times?

8
Approved for public release. OTR-2024-01193.

Modeling Principles to Mitigate the Growth of Technical Debt

The goal is to enable model architects to make better decisions about technical debt tradeoffs for their models

• The remainder of this presentation identifies the key principles that model architects should

consider when making architectural and implementation decisions about their models

• It also describes key model technical debt tradeoffs that result when these principles are not

followed

• Each principle is provided a subjective rating—ranging from Low to High—representing the

commonly observed impacts of failing to follow that principle

• These impacts are characterized by

1. the growth of interest as the model grows

2. the propagation of interest through the model

3. the difficulty of rework, manifesting as increased interest when the debt must be repaid

4. the recurring impacts (taxes) on model users until the problematic aspect has been corrected

9
Approved for public release. OTR-2024-01193.

• One of the biggest obstacles to modeling success is the lack of well-understood, explicitly defined and

documented, sufficiently compelling purposes for the model to fulfill

• Without a good understanding of a model’s intended purposes, the model architect can’t make well-informed

model architectural decisions

• Not properly addressing model users’ information needs frequently results in substantial model churn

– The model needs to be continually reworked to become useful

– The model can become too costly to be worth refactoring—may be less work to start over

• Hence, understanding the most essential functional needs for the model is vitally important

– Drives the early model architectural decisions that can significantly influence its chances of long-term success

Model Implementation Principle Technical Debt Implications

1. Model for Purpose: Establish sufficiently

valuable purposes for the models as early as

possible

Redundant or duplicative information in the model is difficult to cleanly remove and can lead to incorrect

or misleading answers to model queries.

1. Model for Purpose

10
Approved for public release. OTR-2024-01193.

Model Federation Principles and their Technical Debt Implications

• A model federation is a distributed set of models connected by a controlled set of model usage relationships

– To enable their content to be shared whilst retaining their autonomy and ability to evolve independently

• Federation adds some complexity and requires active and conscientious architecting

– To successfully achieve the best tradeoffs among competing alternative federation architectures and approaches

11
Approved for public release. OTR-2024-01193.

Model Layers Principles and their Technical Debt Implications

• Descriptive models are constructed with multiple layers

– Layers of abstraction facilitate separations of concerns

– Taxonomic layers represent the key concepts of the domain at different levels of granularity

• The model architect needs to make critical decisions regarding the definition of these layers

– Selecting the right number of layers

– Identifying the intent of each layer

– Defining the interfaces between layers

12
Approved for public release. OTR-2024-01193.

Modeling Domain Principles and their Technical Debt Implications

• Descriptive models for MBSE need to accurately represent the domain being modeled, at least to the extent

that it answers the questions stakeholders want the models to answer

13
Approved for public release. OTR-2024-01193.

Modeling Semantics Principles and their Technical Debt Implications

• Some of the most common but least visible problems in models are semantic in nature

– Inconsistent use of modeling constructs, resulting in ambiguity

– Mismatches between the modeler’s and model users’ expectations of the semantics of the concepts being modeled

• Resulting in confusion or misinterpretation

– Semantic disconnects between the original intended use and later reuse

14
Approved for public release. OTR-2024-01193.

Model Implementation Principles and their Technical Debt Implications

• A descriptive model’s implementation is fully exposed to users and its functionality is entirely dependent on

users’ ability to interpret and interrogate that model implementation

– As a result, model technical debt often arises at the implementation level—not typically considered to be “architectural”

15
Approved for public release. OTR-2024-01193.

Summary

• The technical debt concept widely used in the software domain needs to be modified to the

domain of descriptive models

– Technical debt is rework that is deferred to the future for expediency

– Model architects need to understand how principal, interest, and taxes influence model value

• The technical debt implications of key model architecture and implementation decisions need

to be understood by model architects to enable the right decisions to be made

– These decisions are made explicitly or implicitly by modelers when developing descriptive models

– Accepting (the right) technical debt is often the right choice

• To illustrate the model technical debt concept, several key examples of modeling principles

pertaining to model purpose and implementation are described along with their implications on

model technical debt

16
Approved for public release. OTR-2024-01193.

Backup

17
Approved for public release. OTR-2024-01193.

2. Model Federation Principle—Consider Federation Early (CFE)

Model federation architecture becomes increasingly difficult to change as the model grows in size and use

• When a model is first created, its size and stakeholders’ expectations are small

– This limits the immediacy of concerns like scaling and federation

• Accordingly, most modeling efforts begin with a single, monolithic model

– This simplifies development and model management

• However, as the model grows in size and use, the value of federation typically grows also

– But model federation architecture becomes increasingly difficult to change as the model grows

– Not consciously architecting a model federation often results in a large “balloon payment” required to pay off the debt

• The taxes to both modelers and users associated with delaying federation are deceptively low

– The agile development principle of waiting until “the last responsible moment” to make decisions often results in

model architectural decisions—particularly about federation—being made too late to avoid significant rework costs

• Modeling projects are generally better off addressing federation proactively, as early as possible

– However, this doesn’t mean all model projects should use federation

– Federation should be done to address specific functional objectives for the models

– These model objectives should be key drivers for the decisions about how to structure the federation

18
Approved for public release. OTR-2024-01193.

3. Model Federation Principle—Partition for Cohesion (PfC)

Misalignment with content boundaries complicates model governance and sustainment

Misalignment with usage boundaries complicates model use

• A key role of the architect is partitioning a large component into discrete components

• In the software domain, this principle is essentially a combination of two principles

– The Reuse/Release Equivalence Principle: “the granule of reuse is the granule of release,” and

– The Common Reuse Principle: “the classes in a component are reused together” (Martin & Martin, 2006)

• Partitioning model scope into individual federated models should be driven by (often competing)

considerations of model governance and model usage

• Aligning model partitions with organizational responsibilities for model content improves the efficiency of

model governance by easing the burden of formal coordination

• Model usage is facilitated when fewer model boundaries are crossed when executing queries

– Each boundary crossing can result in semantic mismatch, complicate query construction, or impede tool performance

– Efficiency is maximized when the most frequent model usages stay within a model’s boundary

• The impact of misalignment—too much coupling, not enough cohesion—can manifest in substantial

additional effort needed to build, sustain, and use those models

Martin, R. & Martin, M. (2006). Agile Principles,

Patterns, and Practices in C#. Pearson.

19
Approved for public release. OTR-2024-01193.

4. Model Federation Principle—Federate to Interrogate (FtI)

Query navigation paths opposing model usage paths complicate using the model to answer questions

• Model federation is the establishment of directional model usage relationships between independently

managed models

• Those directional relationships should be designed to avoid model usage cycles or interdependencies

– These can result in performance problems as models are loaded and reloaded, potentially indefinitely

• In software, this principle is an extension of the Acyclic Dependencies Principle

– Which states: “Allow no cycles in the component dependency graph” (Martin & Martin, 2006).

• The diagram on the left depicts a simple dependency cycle, in which models A and C are interdependent

– Federations should be architected to avoid this but also ensure usage relationships are aligned with the most

important queries

• Queries navigating the reverse paths can be accommodated by introducing an additional “bridging” model

(Model B) that uses both of the dependent models as shown in the diagram on the right

1) a model usage cycle 2) Breaking the cycle via a “bridging” model Martin, R. & Martin, M. (2006). Agile Principles,

Patterns, and Practices in C#. Pearson.

20
Approved for public release. OTR-2024-01193.

5. Model Federation Principle—Dependency Inversion Principle (DIP)

More concrete models typically more frequent and deeper change, impacting models that depend on those models

• This is analogous to the OO software principle of the same name, which specifies that more abstract

software modules should depend on less abstract software modules (Martin & Martin, 2006)

– More concrete modules are typically more volatile than more abstract modules

– Dependency management is facilitated when dependencies are more stable than modules that depend on them

• In the diagram on the left, the directionality of dependency between Models A and C is from the more

concrete C to the more abstract A, consistent with DIP

– This direction of the dependency results in much less frequent model churn at the interface

– The more concrete implementation model is generally much more frequently updated than the more abstract model

• In the diagram on the right, an interface model I can be used to connect Models A and C

– This insulates each model from volatility in the other, since model I is more abstract and more stable than A and C

1) Concrete model C depends on abstract model A
2) Interface model is more stable than models A and B Martin, R. & Martin, M. (2006). Agile Principles,

Patterns, and Practices in C#. Pearson.

21
Approved for public release. OTR-2024-01193.

6. Model Federation Principle—Define Clear Interfaces (DCI)

Ill-defined model interfaces often results in inconsistent inter-model connections and encapsulation breaking

• Whenever models are federated, that federation is implemented by directly connecting elements in one

model with elements of another model using relationships

• Connections between models should be well-defined to establish both:

– A consistent mechanism for semantically connecting those concepts represented by those model elements

– A consistent mechanism for querying those models.

• Specific model elements in model A should be connected to specific model elements in model B with

specific relationships carrying specific semantic meanings

• It is particularly important to define those model interfaces when crossing modeling language boundaries

Figure adapted from:

Martin, J.N. & Brookshier, D. (2023). Linking UAF and

SysML Models: Achieving Alignment

between Enterprise and System Architectures.

33rd INCOSE International Symposium.

22
Approved for public release. OTR-2024-01193.

7. Model Layers Principle—Just Enough Layers (JEL)

Too few layers produce technical debt that must be repaid when layers must be added later

Too many layers add extra complexity to the model

• When defining abstraction layers, it is often valuable to create multiple logical layers or physical layers of

abstraction to adequately address architectural tradeoffs in the logical or physical trade space

– It can be difficult to know a priori how many abstraction layers will be appropriate for a modeling application

• Making the wrong choice leads to greater technical debt

– Too few layers elevates the risk of needing to add additional intermediate layers later, with substantial rework cost

– Too many layers drives additional complexity and taxes to model builders and users

• Similarly, taxonomic levels—generalization and composition hierarchies—should be defined cautiously

Transport Layer

«block»

Physical Layer

«block»

Network Layer

«block»

Data Link Layer

«block»

Communications Satellite

«block»

Subsystem

«block»

System

«block»

Segment

«block»

Element

«block»

Communications Relay

«block»

Communications Node

«block»

Geostationary COMSAT

«block»

0..*0..* 0..*0..*0..* 0..*

– Too few layers can create

difficult rework for each

specialization of each

model element

– Too many layers can lead

to an explosion of

additional model elements

23
Approved for public release. OTR-2024-01193.

8. Model Layers Principle—Don’t Cross Streams (DCS)

Mixing abstraction and taxonomic levels in the same hierarchy, or uncontrolled connections between levels,

results in difficult use and painful rework

• Modeling multiple levels of abstraction or taxonomy is usually highly beneficial for most MBSE application

• Care must also be taken to avoid creating too many different connections between those levels

– Particularly when this results in the violations of the context of the abstraction

• Mixing structure and abstraction in a single hierarchy or combining contextual tenses within the same model

are two often-seen examples

– Easily render the model inconsistent, incoherent, and very difficult to correct

• The modeling methodology should clearly define the distinction between the layers and identify specific

interface points between those layers to enforce consistency and avoid breaking encapsulation

– Communication across abstraction layers dilutes the separation of concerns those abstraction layers were intended

to provide.

Syracuse IV Satellite

«block»

«physical»

Headquarters

«block»

«logical»

formatted command messageformatted command message

24
Approved for public release. OTR-2024-01193.

9. Model Layers Principle—Scale Free Decomposition (SFD)

Defining a specific hierarchy of levels often adds unnecessary complexity and can be overly constraining

• When creating hierarchical structures, modelers often overuse bespoke levels of decomposition

– Often by creating a series of base classifiers or stereotypes that represent a specific taxonomy of distinct element

types that may not be warranted

• In many situations, the natural representation would be a tree structure in which the distinction between

single elements of the tree and composite elements of the tree is irrelevant

– e.g., a scale-free mode of decomposition using recursion

• This is an efficient mechanism for capturing this structure

– Minimizes the addition of extraneous decomposition layers and the elements, relationships, and other

complexities associated with those additional layers

– This approach also facilitates satisfaction of the other two Model Layers Principles

• Just Enough Layers

• Don’t Cross Streams

25
Approved for public release. OTR-2024-01193.

10. Modeling Domain Principles—Other People’s Profiles (OPP)

Reinventing the wheel demands continued maintenance investment and reduces interoperability

• One of the most painful experiences for a model reviewer is to behold the inadvertent reinvention of the

square wheel

– Modelers often eschew widely used standards for representing well-known concepts in lieu of creating their own

unique variation

• While it can be very useful to create new metamodels and profiles to better represent vital concepts within

the model’s domain, this also has a downside

– Often, these homegrown approaches are narrowly focused and poorly documented, reducing their reusability and

understandability.

• Furthermore, unique profiles must be continually maintained through the life of the project

– Often that maintenance cost can be eliminated or significantly reduced by leveraging standards

• By converging on a preferred set of these standards and contributing to their evolution, the MBSE community

can better leverage reuse, improve model interoperability, and more efficiently use their resources

26
Approved for public release. OTR-2024-01193.

Communications Satellite

«block»

Satellite

«block»

Communications Relay

«block»

Communications Node

«block»

Geostationary COMSAT

«block»

11. Modeling Domain Principles—Single Responsibility Principle (SRP)

Refactoring to break up combination concepts into more primitive concepts can be time consuming and error prone

• Definitions should be minimal in scope

– i.e., should represent a single coherent concept rather than a combination of multiple distinct concepts

• Such a composite concept is usually best represented in the model by using multiple inheritance

– i.e., by multiple generalization relationships to those relevant parent concepts

• Failure to adhere to this principle often results in the need to eventually break up that definition into its

constituent components

– And deal with the substantial propagation of rework to the specializations and usages of that definition as well as

users of those usages

• Modelers very experienced with OO programming can be subconsciously biased against multiple

inheritance due to their software experience

27
Approved for public release. OTR-2024-01193.

12. Modeling Domain Principles—Open/Closed Principle (OCP)

Overconstrained base classes need to be reworked to be applicable to new contexts

• Model element type definitions should be designed to be specialized without needing to be modified

• Typically, the modification is needed when an overly constrained conceptual understanding of the

decomposition of an element is envisioned when it is first created

• While it isn’t possible to anticipate all future contexts, enabling future flexibility is not difficult when done

early

• In the figure, the Communications Satellite block has a Payload part with the default multiplicity of 1

– This multiplicity limits its use in the frequently observed cases in which the satellite bears multiple payloads

– If this block is specialized many times before the multiplicity is updated to be less constraining, this drives rework to

many of its specializations

– That rework is difficult as it typically requires manual inspection of each specialization to determine if rework is

warranted

28
Approved for public release. OTR-2024-01193.

13. Modeling Domain Principles—Liskov Substitution Principle (LSP)

Violating LSP often results in confusion in the intent and proper use of both generalizations and specializations

and short-circuits benefits of OO

• The semantics of generalization and specialization in descriptive modeling is that any specialization of a base

classifier should be a valid substitute for that base classifier (Liskov, 1988; Martin, 1996)

• In descriptive models, generalization should be reserved for those contexts for which that substitution is valid,

and not just used as a convenient mechanism for reuse

• In OO software, inheritance is eschewed as most use cases for inheritance are better implemented by

composition

• However, in OO modeling, inheritance carries semantics of substitutability and should be reserved for that

purpose

• In the diagram above, the Payload Transporter block specializes the Communications Satellite block,

presumably to reuse the Payload part and other properties

– However, it is unclear that the Payload Transporter is a suitable substitute for a Communications Satellite in any context

Liskov, B. (1988). Data abstraction and hierarchy. SIGPLAN Notices 23.

Martin, R. (1996). The Liskov Substitution Principle. C++ Report, Vol 9 (2).

29
Approved for public release. OTR-2024-01193.

14. Modeling Domain Principles—Interface Segregation Principle (ISP)

Violating ISP often introduces violations of other principles (like LSP) as workarounds and deactivating features

can be difficult to implement

• Type definitions should avoid defining features that are not required (or even meaningful) in all of its

specializations

• In the diagram below, the Communications Node has an electrical power port whose multiplicity value

makes it non-optional

– As a result, all Communications Nodes must have one, even if this would not make sense in reality

• The node might be internally powered and entirely self-contained

• The port may represent a level of abstraction for which electrical power connections are not appropriately modeled

– The extraneous port then becomes both an encumbrance to continued maintenance and a potential source of

confusion

– It is often difficult to deactivate those features for those specializations that don’t use them, particularly if the model

containing the original type definition is not available for editing

30
Approved for public release. OTR-2024-01193.

15. Modeling Domain Principles—Reify for Reuse (RfR)

Avoiding reification often results in accumulation of more primitive types, which are more prone to typographic

errors and impede model queries

• Modelers often rely too heavily on primitive types to represent items that are meant

to be heavily reused

– This results in many opportunities for failure, e.g., misspellings or alternative word choices

• Enumerations are generally a better choice

– Prevents misspellings or alternative word choices since the potential values are

constrained

• However, if the concepts represented by the value are frequently reused in different

contexts it is often better to reify the concept to represent it

– i.e., create a class to represent it—most often a block in SysML

• This approach provides greater flexibility to model users and facilitates model

maintenance and evolution

– The concept appears only once in the model rather than countless times buried within other

model elements

– Using a model element rather than an enumeration offers opportunities to take advantage

of generalization

MEO

HEO

LEO

GEO

Orbital Regime

«valueType»

orbit_type : Orbital Regime

values

Satellite

«block»

orbit_type : string = "GEO"

values

Satellite

«block»

orbit_type : string = "GEO" orbit_type : Orbital Regime

MEO

HEO

LEO

GEO

orbit_type : Orbital Regime

references

Satellite

«block»

Orbital Regime

«block»

MEO

«block»

LEO

«block»

HEO

«block»

GEO

«block»

orbit_type : Orbital Regime

String primitive

Enumeration

Reification

31
Approved for public release. OTR-2024-01193.

16. Modeling Semantics Principle—Avoid Undertyping

Undertyping produces ambiguity and short-circuits the tool’s ability to verify semantic correctness of the model

• Modelers sometimes underspecify model elements

– Often preferring to avoid being constrained by deciding on a narrowly defined type or stereotype

• An example of this is shown in Figure 1

– The single stereotype «Protocol Link» is used to type connections regardless of whether they are appropriately

connected at that level of abstraction

• Often, a suitable corrective action is to create a set of specializations of the type or stereotype to use in these

different roles, as shown in Figure 2

– Here, «TCP Protocol Link» and «IP Protocol Link» are specializations of «Protocol Link»

– This allows one to treat the different types or stereotypes as the same or different, depending on the context of the

question being addressed

Figure 1: Example of undertyping Figure 2: Example without undertyping

 : Computer2

^ : TCP Layer

^ : IP Layer

 : Computer1

^ : TCP Layer

^ : IP Layer

^ : TCP Layer

^ : IP Layer

^ : TCP Layer

^ : IP Layer

«proxy»

TCP I/F : protocol interface

«proxy»

IP I/F : protocol interface

«proxy»

TCP I/F : protocol interface

«proxy»

IP I/F : protocol interface

«Protocol Link»

«Protocol Link»«Protocol Link»

«Protocol Link»

 : Computer2

^ : TCP Layer

^ : IP Layer

 : Computer1

^ : TCP Layer

^ : IP Layer

^ : TCP Layer

^ : IP Layer

^ : TCP Layer

^ : IP Layer

«proxy»

TCP I/F : tcp_interface

«proxy»

IP I/F : ip_interface

«proxy»

TCP I/F : tcp_interface

«proxy»

IP I/F : ip_interface

«TCP Protocol Link»

«IP Protocol Link»«IP Protocol Link»

«TCP Protocol Link»

32
Approved for public release. OTR-2024-01193.

17. Modeling Semantics Principle—Avoid Overloading

Overloading of modeling constructs produces ambiguity and difficulty in identifying needed rework

• Modelers often overload concepts with multiple meanings

– Often this results from relying only on standard concepts defined by the language and not extending the language to

include new concepts to make the distinction concrete

• In this example of semantic overloading the «dependency» and «satisfy» relationships are each used in the

same model to express multiple distinct meanings

– The three «dependency» relationships each represent very different types of dependencies

– The two «satisfy» relationships each represent very different notions of requirement “satisfaction”

• Overloading results in rework that can be very difficult to find since each instance must be assessed

separately to determine which of the overloaded meanings is the correct one

• This model view shown is not necessarily wrong, but overloading adds some risk of technical debt that more

refinement will be needed in the future involving major rework

33
Approved for public release. OTR-2024-01193.

18. Modeling Semantics Principle—Avoid Composition Misuse

Violating the semantics of composition often produces redundancy and inconsistency in a model federation

• Modelers often overuse composition when describing entities that are not intended to be duplicated

– e.g., when block definition B1 has a composition relationship to block definition B2, this relationship establishes the

existence of an individual usage b2 of block definition B2 in the context of B1

– That individual usage is distinct and separate from every other usage

– While this is often appropriate, in other cases, it is dangerous and misleading

• In the diagram below, the two model elements representing the GPS system are intended to represent the same

system, not two separate copies of that system

• The problem often doesn’t manifest when the models are

used in isolation but emerges when the models are federated

• In this example, the semantics of composition inhibit the

proper interpretation of a single GPS system within that

federation

– Replacing the composition relationship with a reference

association would enable the same GPS System to be

represented in both models by the same usage

34
Approved for public release. OTR-2024-01193.

19. Modeling Semantics Principle—Intrinsic is Permanent

Modeling context-dependent characteristics using immutable modeling constructs results in brittle models

• Modelers often use permanent modeling constructs to represent characteristics that are transitory or

context-dependent

– This results in ambiguity or misinterpretation when the context changes

• Commonly seen examples of these include the specification of stereotypes to represent the concept of a

“system of interest” or a “stakeholder”

– Both of these concepts are highly context-dependent and are not intrinsic properties of the entity being modeled

• While this ambiguity is itself undesirable, the larger danger is not simply misinterpretation of that specific

model element, but the propagation of the underlying assumption throughout the model

– This can significantly hinder the model’s reuse and interpretation within a model federation

• Instead, contextually dependent characteristics should be modeled using modeling constructs that properly

convey the context in which the assertion is being made

– e.g., the characteristic of being a stakeholder is more appropriately modeled as a role or a relationship

– The nature of that relationship may differ significantly between stakeholders

35
Approved for public release. OTR-2024-01193.

20. Model Implementation Principle—Don’t Repeat Yourself

Duplication and redundancy is a common technical debt incurred in descriptive models

• MBSE facilitates consistency management by enabling more efficient reuse of knowledge

• While most modelers are able to prevent obvious duplication (“copy-paste”) of information within models, a

more subtle form of information duplication is often much more difficult to prevent

– In the early stages of a model, it is common to implement a relationship that seems intuitive or obvious

– Over time, the model grows to include additional direct and indirect relationships

– Many of these relationships—particularly the indirect ones—are essentially redundant

• This is not necessarily an error, as both relationships may be legitimate

– However, refactoring the model to remove duplications and inconsistencies is time-consuming and error prone,

particularly since these indirect relationships often grow exponentially over time

a) direct relationship in early model b) multiple direct and indirect relationships in refined model

36
Approved for public release. OTR-2024-01193.

21. Model Implementation Principle— Avoid Brittle Views

Brittle views require substantial recurring maintenance lest they mislead users

• One benefit of MBSE is that model views can be automatically kept up to date as the model evolves

– Changes made to an element in the model can be immediately reflected everywhere that element appears

• While this is typically true, it is important to note that in graphical views this only occurs where that element

already appears

– A newly added model element is rarely automatically added to an existing diagram

• Model views often carry hidden or explicit assumptions that may not be enforced by the model view

specification

– e.g., a graphical model view may be intended to show all of the requirements that have been allocated to a given

system component; if a qualifying requirement is later added to the model, the graphical model view is generally not

automatically updated to reflect that change, so the model view is no longer consistent with its intent

• Brittle views require substantial maintenance effort to keep up to date as the model evolves

– When not kept up to date, users can be misled by these views that are no longer consistent with their intent

• Dynamically generated views tend to be less prone to this problem

– Relation maps, dependency matrices, tables, etc. are regenerated from the model on demand

– However, poor choices of scope can result in these views not being regenerated consistently

• This is commonly seen when modelers prefer to use package containment to avoid creating new stereotypes

37
Approved for public release. OTR-2024-01193.

22. Model Implementation Principle— Cite Your Sources

Failing to document sources can result in untrustworthy models

• In MBSE, descriptive models replace documents as the embodiment of SE information

– However, the content of those models often originates from other sources, e.g., documents, analyses, or other,

disconnected models

• Establishing the provenance of this data is often essential to provide users with confidence in the accuracy

of the representation of this information in a model

• When information sources are not documented at the time their model elements are created, those sources

can often be difficult or impossible to find later

• Furthermore, when those information sources are updated, it can be difficult to ensure the appropriate

updates are made everywhere needed in the model

– Reifying reference sources—creating specific model elements representing them rather than relying on free-form text

strings to document those sources—can be helpful

– A robust configuration management approach can facilitate keeping the model synchronized with those sources

38
Approved for public release. OTR-2024-01193.

23. Model Implementation Principle— Use Units

Poor discipline with units can result in substantial technical debt to correct

• SysML 1.4 introduced a mature and comprehensive standard approach for assigning units to value

properties

– However, it is not as widely used as it should be

• Value properties that should have units but do not are at a substantial risk for being misused or

misinterpreted with potentially catastrophic consequences

• Missing units can often propagate exponentially through the model

– Resulting in substantial rework to find and correct not directly derived properties, opaque expressions, and other

indirect impacts

39
Approved for public release. OTR-2024-01193.

24. Model Implementation Principle— Build Quality In

Poor model quality can be difficult to refactor and reduces utility of and confidence in the model

• Quality is often much more critical in descriptive models than in software

– Since users are exposed to the model’s implementation details, not just abstracted behaviors

• Poor attention to model quality during construction often results in proliferation and propagation of defects

– Increases the difficulty of rework

– Also impacts users’ ability to create queries and trust that the results are complete and correct

• Automated model checking, modeler training, and peer reviews are vitally important tools

– To strengthen model quality and detect errors in either/both the model or the design of the entity being modeled

• Disciplined attention to model quality during construction is critical to minimize contagion and facilitate trust

in models

• Failure to ensure model quality can lead to stakeholders losing faith and confidence in the models to serve

as the authoritative source of truth of SE knowledge

– This can threaten the continued viability of the effort

	Slide 0: Key Modeling Principles to Moderate the Growth of Model Technical Debt in MBSE
	Slide 1: The Technical Debt Concept
	Slide 2: Principal in Technical Debt
	Slide 3: Interest in Technical Debt
	Slide 4: Taxes in Technical Debt
	Slide 5: Why—or Why Not—Technical Debt?
	Slide 6: The (Different) Calculus of Technical Debt in Descriptive Models
	Slide 7: Characterizing Model Technical Debt
	Slide 8: Modeling Principles to Mitigate the Growth of Technical Debt
	Slide 9: 1. Model for Purpose
	Slide 10: Model Federation Principles and their Technical Debt Implications
	Slide 11: Model Layers Principles and their Technical Debt Implications
	Slide 12: Modeling Domain Principles and their Technical Debt Implications
	Slide 13: Modeling Semantics Principles and their Technical Debt Implications
	Slide 14: Model Implementation Principles and their Technical Debt Implications
	Slide 15: Summary
	Slide 16: Backup
	Slide 17: 2. Model Federation Principle—Consider Federation Early (CFE)
	Slide 18: 3. Model Federation Principle—Partition for Cohesion (PfC)
	Slide 19: 4. Model Federation Principle—Federate to Interrogate (FtI)
	Slide 20: 5. Model Federation Principle—Dependency Inversion Principle (DIP)
	Slide 21: 6. Model Federation Principle—Define Clear Interfaces (DCI)
	Slide 22: 7. Model Layers Principle—Just Enough Layers (JEL)
	Slide 23: 8. Model Layers Principle—Don’t Cross Streams (DCS)
	Slide 24: 9. Model Layers Principle—Scale Free Decomposition (SFD)
	Slide 25: 10. Modeling Domain Principles—Other People’s Profiles (OPP)
	Slide 26: 11. Modeling Domain Principles—Single Responsibility Principle (SRP)
	Slide 27: 12. Modeling Domain Principles—Open/Closed Principle (OCP)
	Slide 28: 13. Modeling Domain Principles—Liskov Substitution Principle (LSP)
	Slide 29: 14. Modeling Domain Principles—Interface Segregation Principle (ISP)
	Slide 30: 15. Modeling Domain Principles—Reify for Reuse (RfR)
	Slide 31: 16. Modeling Semantics Principle—Avoid Undertyping
	Slide 32: 17. Modeling Semantics Principle—Avoid Overloading
	Slide 33: 18. Modeling Semantics Principle—Avoid Composition Misuse
	Slide 34: 19. Modeling Semantics Principle—Intrinsic is Permanent
	Slide 35: 20. Model Implementation Principle—Don’t Repeat Yourself
	Slide 36: 21. Model Implementation Principle— Avoid Brittle Views
	Slide 37: 22. Model Implementation Principle— Cite Your Sources
	Slide 38: 23. Model Implementation Principle— Use Units
	Slide 39: 24. Model Implementation Principle— Build Quality In

