Leveraging Architecture to Inform the Design of Simulation Experiments for Mission Engineering Studies

2024 NDIA Systems and Mission Engineering Conference

Michael Pennock, Angela Leese, and Bridget Musselman

Mission Integration Office of the Under Secretary of Defense for Research and Engineering

27th Annual NDIA Systems and Mission Engineering Conference October 29, 2024

Distribution Statement A. Approved for public release. Distribution is unlimited. DOPSR Case #24-T-2805

Mission Integration's Challenge

- Traditional approaches to engineering analysis and experimentation focus on answering specific system performance questions
 - E.g., What type of wing design will give my aircraft the greatest range?
- In contrast, Mission Integration (MI) builds portfolios of investments to improve mission performance under a variety of circumstances
 - What set of technologies should DoD mature to improve the performance of mission X?
- Interactions between investment options becomes critical
 - An advanced sensor and an advanced weapon may not have impact by themselves, but put to them together...

Mission Integration Workflow

- Evaluate candidate technologies by integrating them into a realistic mission architecture
 - Often done through constructive simulation
 - These simulations can be computationally expensive

- 1. Digitally represent the baseline mission threads & METs within scenario, vignette and mission usecase (including threat & environment); conduct baseline analysis of mission measures
- 2. Update mission threads & METs to address alternative concepts with associated changes; update systems' attributes & behaviors; conduct analysis alternatives & assess impact on mission measures

Source: Department of Defense Mission Engineering Guide, Version 2.0, October 1, 2023, DOPSR #23-S-3518

Why is this a challenge?

- Mission Integration often considers a very large number of investment options
 - About 50 candidate technologies at a time
 - A naïve full factorial experimental design on 50 options means a run matrix of over 112 trillion cases
- Traditional approaches to reducing the size of an experimental design sacrifices information on interaction effects
- But in Mission Integration we are often looking for interaction effects

Why interactions matter

IBD Source: Goldenberg, Marc, Reusable Digital Engineering Environment to Support Mission Engineering Studies, 2021 NDIA Systems and Mission Engineering Conference, DOPSR #22-S-0345

How is this handled today?

- To date, MI has used a mixture of expert judgement and some criteria-based methods to down-select to a reasonable run-matrix
- Even if done well, it is hard to justify the results to external stakeholders
 - "Why didn't you study my technology?"
- Need a systematic approach to make MI's decisions more defensible
 - Also reduces the chance that an important investment was missed

Three Areas for Investigation

- 1. Better understand the gaps and opportunities in the baseline
 - Adapt existing approaches for analyzing large constructive simulations
- 2. Systematically select which technology options are introduced
 - Mission engineering introduces challenges to traditional approaches
 - Develop ME specific approach using data from past MI studies
- 3. Evaluate analysis results in the context of the whole portfolio
 - Adapt existing approaches from decision and portfolio analysis

Idea: Use the Mission Architecture to Guide the DoE

- Use mission architecture to identify complementary technologies
 - Technologies that work together to close a kill chain are complements
 - Complements are more likely to be significant from a DoE perspective
- Three perspectives are used to identify viable bundles of options - Functional, Structural, and Portfolio
- Surrogates and duplicates can be used for risk reduction
- Performing analysis using the architecture reduces costs
 - Options are eliminated before building expensive simulation models

Research Approach

- Constructed filters based on experience from past MI studies
- Tested the filters on a recent batch of technology proposals and associated baseline architecture
 - Interactions were kept unless there was enough evidence to remove them
 - Found that too few interaction cases were filtered out
- Transitioned to a set of bundling rules
 - Bundles only added to experimental design if sufficient evidence
- Tested revised bundling rules on two historical MI data sets

Defining a Proposal

• Proposal attributes:

«block»
 Proposal
Applicable Vignettes [0*]
Gaps Addressed [0*]
Category [1]
MT Activity Mapping [0*]
Starting TRL : Integer [1]

- A proposal maybe be applied to more than one vignette
- A proposal may address more than one gap
- Assigned one of three categories: Functional, Structural, or Hybrid
- Functional and hybrid proposals are also mapped to applicable activities in the mission thread

Applying Bundling Rules

- Must apply to the same vignette to be candidates for bundling
- Two types of bundling operations:
 - 1. Pair functional proposals with enabling structural proposals
 - 2. Pair functional proposals that complement in each other in the mission thread
- Limited bundle size using the probability of realization
 - Derived from TRLs

Bundling 1 – Pairing Structural and Functional Proposals

ID

Proposal		Applicable				MT
Name 🔄	Proposal ID	Vignettes 📧	Gaps 🔽	TRL 🝷	Category	- Activity -
proposal_13	p013	В	G1	3	Structural	
proposal_51	p051	В	G1	5	Structural	
proposal_83	p083	В	G1	3	Structural	
proposal_34	p034	В	<u>G1</u>	9	Hybrid	Engage
proposal_85	p085	В	G2	4	Structural	
proposal_19	p019	В	G2	4	Structural	
proposal_22	p022	В	G2	3	Structural	
proposal_15	p015	В	G2	5	Functional	Engage
proposal_48	p048	В	G2	5	Hybrid	Track
proposal_54	p054	В	G2	9	Structural	
proposal_71	p071	В	G2	3	Functional	Assess
proposal_77	p077	В	G2	9	Functional	Track
proposal_9	p009	В	G2	4	Structural	
proposal_87	p087	В	G2	5	Hybrid	Assess
proposal_88	p088	В	G2	3	Functional	Track
proposal_6	p006	В	G3	4	Functional	Engage
proposal_25	p025	В	G3	8	Functional	Engage
proposal_29	p029	В	G3	6	Structural	
proposal_84	p084	В	G3	6	Hybrid	Engage
proposal_70	p070	В	G3	8	Functional	Find
proposal_75	p075	В	G3	3	Functional	Target
proposal_26	p026	В	G4	4	Structural	
proposal_68	p068	В	G4	8	Structural	
proposal_38	p038	В	G4	7	Structural	
proposal_81	p081	В	G4	5	Functional	Target
proposal_7	p007	В	G5	8	Functional	Target
proposal_46	p046	В	G5	4	Functional	Engage
proposal 42	p042	В	G5	6	Hybrid	Find

Premise: new functions may require new architectural components to realize their full benefit to the kill chain.

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE, DISTRIBUTION IS UNLIMITED.

Bundling 2 – Pairing Functional Proposals

Proposal	Proposal	Applicable				MT
Name 🔽	ID 🔻	Vignettes 耳	Gaps 🖵	TRL 👻	Category 🔽	Activity 🝷
proposal_32	p032	С	G1	6	Hybrid	Find
proposal_39	p039	С	G1	7	Functional	Engage
proposal_53	p053	С	G1	7	Structural	
proposal_66	p066	С	G1	7	Hybrid	Find
proposal_13	p 013	С	G1	6	Structural	
proposal_26	p026	С	G1	8	Hybrid	Target
proposal_10	p 010	С	G2	4	Structural	
proposal_12	p 012	С	G2	7	Structural	
proposal_75	p075	С	G2	8	Hybrid	Fix
proposal_7	p007	С	G2	9	Hybrid	Assess
proposal_8	p008	С	G2	7	Structural	
proposal_62	p062	С	G2	5	Structural	
proposal_79	p079	С	G2	7	Hybrid	Track
proposal_28	p028	С	G2	9	Structural	
proposal_5	p005	С	G3	8	Hybrid	Assess
proposal_23	p 02 3	С	G3	5	Functional	Fix
proposal_14	p 014	С	G3	7	Functional	Find
proposal_52	p 0 52	С	G3	9	Hybrid	Assess
proposal_63	p063	С	G3	5	Functional	Track
proposal_67	p 0 67	С	G3	4	Hybrid	Find
proposal_47	p047	С	G4	6	Structural	
proposal_73	p073	С	G4	4	Structural	
proposal_43	p043	С	G5	7	Functional	Target
proposal_45	p 045	С	G5	7	Hybrid	Track
proposal_46	p 046	С	G5	4	Hybrid	Engage

Bundle A MT Proposal ID **TRL** Activity 6 Find p032 p075 8 Fix p079 7 Track p026 8 Target 7 Engage p039 p007 9 Assess Bundle B Proposal MT **TRL** Activity ID 7 Find p066 8 Fix p075

7 Track

7 Target

7 Engage

8 Assess

p045

p043

p039

p005

Bundle C				Bundle C1			
Proposal		MT		Proposal MT			
ID	TRL	Activity		ID	TRL Activity		
p067	4	Find		p067	4 Find		
p023	5	Fix		p023	5 Fix		
p063	5	Track					
p043	7	Target	Bundle C2				
p046	4	Engage					
p052	9	Assess	-	Proposal	MT		
-				ID	TRL Activity		
			•	p023	5 Fix		
		-		p063	5 Track		
	•			_			
Bur	ndle	e C4		Bun	dle C3		
Proposal		MT		Proposal	MT		
ID	TRL	. Activity		ID	TRL Activity		
p043		7 Target		p063	5 Track		
p 046	4	4 Engage		p043	7 Target		

Premise: a functional proposal may be enhanced or enabled by improvements in other functional aspects of the kill chain.

Proposed technologies are mapped to the baseline architecture and assigned a category

IBD adapted from : Goldenberg, Marc, Reusable Digital Engineering Environment to Support Mission Engineering Studies, 2021 NDIA Systems and Mission Engineering Conference, DOPSR #22-S-0345

- Use the architecture to
 - Find functional proposals that may need structural proposals for closure
 - Find functional proposals that may complement each other in execution

IBD adapted from : Goldenberg, Marc, Reusable Digital Engineering Environment to Support Mission Engineering Studies, 2021 NDIA Systems and Mission Engineering Conference, DOPSR #22-S-0345

- Use the Mission Thread for the vignette to:
 - Identify the functional contribution of technology proposals

BDD adapted from : Goldenberg, Marc, Reusable Digital Engineering Environment to Support Mission Engineering Studies, 2021 NDIA Systems and Mission Engineering Conference, DOPSR #22-S-0345

Candidate		
Name	Category	TRL
P2P Comms	Structural	8
SAR Sensor	Functional	7
Adv Sensor	Functional	6
Missile-X	Functional	8

					Applicable	
Proposal ID 💌	Candidate Name 💌	Category 🔽	MT Alignment 🔹	Gap 🔽	Scenario 🔻	TRL 🔽
p001	Alt Comms	Structural	N/A	1	Α	5
p002	P2P Comms	Structural	N/A	2	Α	8
p003	SAR Sensor	Functional	Find, Fix	2	Α	7
p004	UAV-X	Hybrid	Find, Fix, Track, Assess	1, 3	Α	Z
p005	Adv Sensor	Functional	Find, Fix, Track, Assess	2, 3	Α	e
p006	Missile-X	Functional	Engage	4	А	8

Candidate			Candidate		
Name	Category	TRL	Name	Category	TRL
Alt Comms	Structural	5	Alt Comms	Structural	5
Adv Sensor	Functional	6	SAR Sensor	Functional	7
Missile-X	Functional	8	Missile-X	Functional	8

Candidate			Candidate
Name	Category	TRL	Name
UAV-X	Hybrid	4	UAV-X
Adv Sensor	Functional	6	Missile-X

	Candidate			Candidate		
	Name	Category	TRL	Name	Category	TRL
4	UAV-X	Hybrid	4	UAV-X	Hybrid	4
6	Missile-X	Functional	8	SAR Sensor	Functional	7

IBD adapted from : Goldenberg, Marc, Reusable Digital Engineering Environment to Support Mission Engineering Studies, 2021 NDIA Systems and Mission Engineering Conference, DOPSR #22-S-0345

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE. DISTRIBUTION IS UNLIMITED.

Lessons Learned to Date

- The first attempt at applying the filters was too conservative
- The revised rules did a better job of reducing the number of bundles from a full factorial design
- but challenges remain
 - Requires a detailed baseline architecture to effectively differentiate among options
 - The breadth of the gaps in the current data sets make it challenging to down select
 - Does not account for interactions with the threat architecture
 - TRLs by themselves do not provide a strong indicator of probability of transition

Future Work

- Finish refining and testing the rules on the historical studies
- Modify the rules to integrate threat architectures
- Expand the set of data used to assess maturity and transition risk
- Build scripts to automate aspects of the bundling rules in the architecture tool
- Implement the approach on a future MI technology evaluation study