

GOVERNMENT INITIATIVES (AGI)

Modeling Dynamic Wireless Channels in Interactive Terrestrial Environments

Peter Douglass, Technical Support Engineer 29 October 2024

©2024 ANSYS, Inc. or its affiliated companies. All rights reserved. Approved for Public Release.

Modeling and Simulation for Wireless Connectivity

Simulation Challenge: Advancements in highfrequency modern RF solutions requires us to go beyond statistical/analytical models to arrive at trusted simulation results

Ansys GPU-SBR simulation engine combines computational electromagnetics (CEM) and ray-tracing

Source: "6G: The Next Horizon: From Connected People and Things to Connected Intelligence", Huawei White Paper

NSYS / GOVERNMENT INITIATIVES (AGI)

Wireless channel modeling in accurate virtual twin environments

Simple geometry works for < 2 GHz (low FR1 bands)...

Open Street Maps city model with simple "block" buildings

...but for FR2 bands, better fidelity is needed.

aerometrex

5cm Resolution City Model Based on measurements

Denver city model courtesy of Aerometrex https://aerometrex.com > 10M geometry facets

Challenges to wireless systems and near field radar modeling

- Physical propagation in the terrestrial domain is a major challenge to communications and sensors
- RF propagation impacts of interfering RF systems compounds challenges
- Motion of RF systems causes channels to change rapidly
- Rise of high-resolution digital terrain and structure modeling
- Need/desire to train AI at the PHY layers

2cm structural resolution

Understanding Signal Delay Spread (3 Bounce Problem)

5

Complex RF Environment with surface reflections of many signals between transmitting and receiving antenna models

Without high-fidelity modeling & simulation, systems designers and network planners struggle to understand and design around these complexities

1.5 1.0 0.5 0.0 -0.5 -1.0 0.5 1.0

Why are we getting all these extra signal/pulse fronts?

Wireless communication channel and radar modeling requirements

- Requires accurate near field and far field propagation models
- Must produce wideband channel models for transient behavior
- Frequent channel updates required – O(μsec) or less
- Very fast computation
- Consume accurate environment models

5G mmWave Shooting and Bouncing Ray Model

• Connect to realistic antenna system designs

Data-on-demand real time wireless channel and radar solver

Ansys Perceive EM Solver

- Generates wireless channel models and radar response at high channel sounding rates/PRFs
- Operates at or near real-time on GPU devices for moving antennas, arrays, and MIMO radar systems
- I/Q Data on Demand for dynamic scenes
- API-driven for custom PHY L1 and radar modeling workflows (C++, Python APIs)
- **Physics-accurate** antennas, environments and platform motion (including micro-Doppler)
- High-fidelity EM physics solver based on Shooting and Bouncing Rays Physical Optics (SBR-PO) framework

Perceive EM solver applied to 5G channel modeling, and used in MRT mMIMO beamforming (single subcarrier/symbol)

7

Perceive EM enables Ansys RF Comms and Radar solution workflows

- Perceive EM \rightarrow Solver Engine API
 - Enabling Workflow
 Development for Radar and
 Communications Systems

- Ansys RF Channel Modeler →
 Communications & Radar
 Imaging Workflow
 - Workflow for Wireless
 Communications Simulation
 - All domain operations (land, air, sea, space)
 - Utilizes Perceive EM "under-the-hood"

- Ansys AVxcelerate Sensors →
 Automotive Sensor Workflow
 - Workflow for Automotive Multi-Sensor Simulation
 - Specialized for driving simulation
 - Utilizes Perceive EM
 "under-the-hood" for radar

Digital Mission Engineering (DME) with Ansys Systems Tool Kit (STK)

- Flagship software w/ ~30 yr. heritage of systems modeling & simulation software for aerospace / defense industry
 - Satellite Systems & Mission Design
 - Ground/Terrestrial Systems/Aircraft
 - Radar/Comm/RF
 - Missile Defense

/\nsys / government initiatives (agi)

RF/radar Channel Modeling for low, mid, mmw & THz Band systems

Scene Summary: 10msec channel soundings 28GHz, 400MHz BW @ 1024 Samples 128 Channel → 1.3M samples per second

 Denver city 3D Tile model courtesy of Aerometrex

 https://aerometrex.com
 (2cm Resolution Scene)

28 GHz Base Station

- 8 x 8 dual-polarized elements
- 128 total channels
- Ansys HFSS Embedded Element Patterns

28 GHz Mobile Device

GOVERNMENT INITIATIVES (AGI)

• Single element/pol

/\nsys

 Packaged antenna model from HFSS simulation

RF/radar Channel Modeling for low, mid, mmw & THz Band systems 🛞

P

$f_c = 28 \text{ GHz}$ **BW = 400 MHz**

Denver city 3D Tile model courtesy of Aerometrex aerometrex https://aerometrex.com (2cm Resolution Scene)

Channel for Pedestrian Mobile to Array Channel 1, Polarization 1

Compute Time: 135 secs for 128 channels on laptop + RTX A5500 GPU

<u>/\nsys</u> **GOVERNMENT INITIATIVES (AGI)**

RFCM example SAR data collection over AGI HQ

Synthetically generated SAR image with rotating wind turbine Imaging spotlight SAR platform at 50 deg Elevation

BLUE PLANE = Radar Illumination Direction (Uniform Phase Front)

RED PLANE = Radar Image Plane

RFCM utilizes **Perceive EM** to generate SAR images (360 degrees, every 2 degrees, total of 181 images, 15 minutes)

//NSYS / government initiatives (agi)

Creation of Synthetic SAR data collections AI training Real vs Synthetic SAR Imagery

REAL Capella 1 Mar 2023 Collection

SYNTH_Data_60dB_1-Bounce

15

<

Channel Modeling and Radar Imaging in Partner Applications

5G/6G Hardware-in-the-Loop (HiL) Testing and Validation

Ansys / government initiatives (agi)

Omniverse as a Platform Visualization and EM Simulation

Ansys integrated with Aerial Omniverse Digital Twin

Being part of System-Level Simulation with AI/ML in the loop

- System-Level Simulation with digital twin of RAN, Physical World and UE. Leverage AI/ML agents in the loop
- Using Ansys Perceive EM Solver as an alternative to AODT EM Solver, and Ansys HFSS as one of antenna profile formats

19

NVIDIA AODT channel predictor AI training powered by Ansys Perceive EM

UE at New Initial Position for Each Batch

6 Time Slot with Mobility Simulated

 $t_0 \rightarrow t_6$

Complex Impulse Response

GOVERNMENT INITIATIVES (AGI)

PERCEIVE EM

/\nsys

A proof-of-concept demonstration

In conclusion...

- High Fidelity and high-speed channel modeling: Perceive EM
- Comm channel and radar modeling in the same solver
- API solver access for R&D and custom solutions
- API-solver applied to Ansys Solutions (RFCM, AVx)
- API-solver applied to partner Solutions (Keysight, NVIDIA, more to come!)

NSYS / GOVERNMENT INITIATIVES (AGI)

GOVERNMENT INITIATIVES (AGI)

23

Synthetic Data generation driven by Digital Mission Engineering

- AI/ML requires DATA (lots of data) to learn/train, test/validate, and operate
- Synthetic sensor data generation requires:

Introducing Ansys RF Channel Modeler

Wireless channel modeling in dynamic environments for multi-domain access points and subscribers

Base Station (32R, 32T) 3 x Building Tops

HFSS Antenna Models (3.8 GHz)

25

Denver city model courtesy of Aerometrex https://aerometrex.com > 10M geometry facets

/\nsys **GOVERNMENT INITIATIVES (AGI)**

C-Band comms example in RFCM

Scene Summary:

10msec channel soundings

BTS – 32 Antennas

UE – 2 Antennas

C-Band, 100MHz BW @ 512 Samples

2 min scenario \rightarrow 768,000 channel soundings \rightarrow 393M frequency samples

(~2.6x faster than real time simulation)

Ansys

system)

trum Real/Imag Data, UE to Array Channel :

26