Concepts for Assurance of Adequately Secure and Resilient Systems

Secure Cyber Resilient Engineering Practice

Mark Winstead Principal Chief Engineer, Systems Security The MITRE Corporation

USD(R&E)

Presented to NDIA Systems and Mission Engineering Conference Norfolk, VA October 2024

CRWS 13 Assurance Thru Engineering

Mission Statement

LAST EXIT BEFORE LEAVING ENGINEERING

Secure By Design

Assured Through

Engineering

EXIT

CRWS Workshop

2024

The CRWS Workshop forum provides a venue for enabling the military systems community (government agencies, the Services, the defense industrial base, and academia) and other extreme consequence systems communities (e.g., NASA, NNSA, NRC) to collaboratively address

- 1) secure cyber resilient engineering technical challenges and
- 2) secure cyber resilient engineering workforce competency,

for the fulfillment of the engineering roles and responsibilities stated in <u>DoDI 5000.83</u>.

Vision for Secure Cyber Resilient Engineering (SCRE)

Cyber Resilient Weapon Systems Workshop 11 (CRWS 11) planted a seed on

Administration (NNSA), Sandia, DARPA, NIST, and others.

trustworthiness and assurance, which took some roots at CRWS 12 discussions of secure

design – specifically the question of assurance of design and system realization. CRWS

13 dived into assurance through engineering with the help of National Nuclear Security

- Secure cyber resilient engineered systems that embody a system-centric and effects-oriented perspective to address the ubiquitous nature of security concerns associated with the design, development, fielding and sustainment of military systems.
- The approach seeks to establish and maintain a strategic, principled, and effective engineering capability for delivery of cost-effective secure cyber resilient engineered weapon systems to the warfighter

Distribution Statement A: Approved for public release. DOPSR case #24-T-2809 applies. Distribution is unlimited.

Assurance

Grounds for justified confidence that a claim has been or will be achieved ISO/IEC/IEEE 15026-1

This confidence is achieved by applying applicable system life cycle activities, which include a planned, systematic approach with acceptable measures of system assurance and risk management of exploitable vulnerabilities ... A claims-oriented approach to assurance serves to address the concerns that are not typically captured within the requirements that focus on intended behavior [e.g., safety, security] ISO/IEC/IEEE 15288 Clause 5.10

Weak				
	AXIOMATIC – Assertion	 assurance by unsubstantiated or weakly substantiated declaration 	Prescriptive	 Assurance by adherence to process or test-driven governance or demonstrating compliance
	ANALYTIC – Test and Analysis	 assurance from accumulated evidence 	Goal	 One size fits all Assurance by adaptable outcome- driven governance, whereby goals
	SYNTHETIC – Assurance Case	 assurance from reasoned and compelling evidence-based arguments 	Oriented	or claims are established and explicit argumentation is made that goals are met
Strong	Appendix A "Approaches to Assurance" in [DSB 2017]		Blended \prec	 Assurance by mixing prescriptive and goal priorited approaches
Axiomatic & Analytic → Prescriptive		Rinehart, et al 2017	and goal-oriented approaches	

Synthetic \rightarrow Goal-Oriented & Blended

Distribution Statement A: Approved for public release. DOPSR case #24-T-2809 applies. Distribution is unlimited.

Assurance Case (Synthetic)

 Structured argument, supported by a body of evidence, that provides a compelling, comprehensible, and valid case that the stated claims for a system are achieved within a set of accepted constraints

Employs the 3 Es

- Explicit Claims
 - Assertions: What do you seek to achieve?
 - Evidence
 - Quality of data: accuracy, credibility, relevance, sufficiency
- Expertise
 - Competency: About the subject addressed by the claim and in all supporting evidence

Contrasts with Axiomatic (follow a process) and Analytics

This Photo by Unknown Author is licensed under <u>CC BY-NC-ND</u>

Distribution Statement A: Approved for public release. DOPSR case #24-T-2809 applies. Distribution is unlimited.

When Assurance Cases Work

Examined Claims and Results

Claim	Result	
Fundamental: Assurance cases (ACs) are successful where suitable	Well-founded historically and by expert consensus	
Benefit: ACs are more comprehensive than conventional methods alone	Easily substantiated	
Benefit: ACs improve the allocation of responsibility over prior norms	Appears well backed	
Benefit: ACs organize information more effectively than conventional methods	True with caveats. Notional rigor often needed impedes accessibility	
Benefit: ACs address modern certification challenges	Largely well-supported, especially for complexity and technical innovation	
Benefit: ACs offer an efficient certification path compared to other approaches	Maybe, once an organization has experience	
Benefit: ACs provide a practical, robust way to establish due diligence	Appears well-founded	

NASA/CR-2017-219582

Understanding What It Means for Assurance Cases to "Work"

David J. Rinehart Architecture Technology Corporation, Campbell, California

John C. Knight and Jonathan Rowanhill Dependable Computing, Charlottesville, Virginia

> Rinehart, et al 2017 examined case studies and interviewed SMEs to examine claims about Assurance Cases

April 2017

Prescriptive vs Goal-Oriented

Or

Adherence to process, tests, or compliance vs. Assurance by adaptable outcome-driven governance

Prescriptive is preferable *when adequate* due to its "complete the checklist" approaches that enable high confidence in completing authorizations

Prescriptive adequate when	Goal-oriented/blended ¹ necessary when	Elevated levels of	When prescriptive is adequate Well-understood	
Using well-established Using novel syste technology technol	Using novel systems and innovative technology	security and safety consequences Limited security and safety consequences		Well-known systems & technology
Using straightforward and predictable design (simple design)	Systems have complex and non-intuitive design			
Safety and security consequences are limited due to low level of safety/security responsibilities	Systems have elevated security and safety responsibilities with elevated failure consequences (safety/security-critical)		Complex, dynamic designs	

¹Blended *may* suffice when subsystems or elements satisfy prescriptive adequacy properties

Challenges with Defense Systems and Prescriptive Approaches

- Use of emerging technologies and technologies often developed for limited use (e.g., military), such technologies are often new and innovative.
- Complexity, especially for those purposes unique to the community (e.g., military in nature)
- Needs to preserve technology secrecy further complicates a system.
- Needs to protect the means and methods used to acquire information that inform development of the technology and the use of the system.
- The intended use and opposition to that use often mean the systems have severe security-related consequences including those associated with failures and erroneous behaviors and outcomes.
- Having a "by design" destructive intent, making it necessary to ensure the destructive capability is used only for the intended manner and results in intended destruction.
- Prevent the exposure of technology that provides combative advantages.

Complex, innovative, and security-critical

More on Assurance Case Advantages

"An assurance case can identify gaps in requirements coverage and inform the development of derived requirements to address those gaps" ISO/IEC/IEEE 15288:2023 Clause 5.10

"Construction of an assurance case can be helpful to provide insight for verification activities and to present verification results" ISO/IEC/IEEE 15288:2023 Clause 6.4.9

"Construction of an assurance case can be helpful to provide insight for validation activities and to present validation results" ISO/IEC/IEEE 15288:2023 Clause 6.4.11

"Establishing an assurance case can be applied to guide quality assurance activities and to help ensure critical quality characteristics are considered" ISO/IEC/IEEE 15288:2023 Clause 6.3.8

When Assurance Cases Work Redux

Examined Claims and Results

Claim	Result		
Fundamental: Assurance cases (ACs) are successful where suitable	Well-founded historically and by expert consensus		
Benefit: ACs are more comprehensive than conventional methods alone	Easily substantiated		
Benefit: ACs improve the allocation of responsibility over prior norms	Appears well backed		
Benefit: ACs organize information more effectively than conventional methods	True with caveats. Notional rigor often needed impedes accessibility		
Benefit: ACs address modern certification challenges	Largely well-supported, especially for complexity and technical innovation		
Benefit: ACs offer an efficient certification path compared to other approaches	Maybe, once an organization has experience		
Benefit: ACs provide a practical, robust	Appears well-founded		

The assurance case is the enabling mechanism to show that the system will meet its prioritized requirements, and that it will operate as intended in the operational environment, minimizing the risk of being exploited through weaknesses and vulnerabilities ...

the assurance case is a critical mechanism for supporting the risk management process ...

In systems engineering, the activities for developing and maintaining the assurance case enable rational decision making, so that only the actions necessary to provide adequate justification (arguments and evidence) are performed.

From NATO Standard AEP-67 Engineering for System Assurance in NATO Programmes' Executive Summary

Conclusion

When used, assurance cases can show meeting prioritized mission requirements as intended and only as intended and justify systems engineering decisions.

Questions/Discussion

Mark Winstead <u>mwinstead@mitre.org</u>

NDIA S&ME Conference Distribution Statement A: Approved for public release. DOPSR case #24-T-2809 applies. Distribution is unlimited. October 2024