

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND ARMAMENTS CENTER

Human Systems Integration for Human Machine Integrated Formations

Presented to the NDIA Human Systems Conference, Arlington VA

12 MAR 2025

Controlled by:	DEVCOM AC				
Controlled by:	Tactical Behavior Research Laboratory				
Distribution Statement:	A				
POC:	Elizabeth Mezzacappa				

DEVCOM ARMAMENTS CENTER, TACTICAL BEHAVIOR RESEARCH LABORATORY | DR. ELIZABETH MEZZACAPPA

US ARMY HUMAN MACHINE INTEGRATED FORMATIONS

Future of human-machine integration must bring right mix of robotic elements to

By Jerome Aliotta October 5, 2023

ARMY NEWS

AUSA NEWS: Army Gaining Ground on Human-Machine Integrated Formations

10/14/2024

By Josh Luckenbaugh

WASHINGTON, D.C. — The Army wants to integrate robots into its fighting formations, and the service will soon be hosting an industry day to provide companies a chance to offer solutions to this problem, the head of Army Futures Command said Oct. 14.

Initiated in 2023, the Army's human-machine integrated formations initiative is the service's effort to fight with a mix of human soldiers and unmanned systems on the battlefield, with the goal of having the robots make first contact with an adversary.

Gen. James Rainey, head of Army Futures Command, said the service has conducted testing with human-machine integrated formations this year at the National Training Center at Fort Irwin, California, adding that he feels "very good" about progress so far.

The service in November will be hosting an industry day during which it will be presenting companies five variants of human-machine integrated platoons it has developed, and "I fully expect industry is going to come back with some incredibly fascinating ideas," Rainey said during a media roundtable at the Association of the United States Army's annual meeting.

Human Machine Integrated Formations (HMIF) Overview & Incremental Roadmap

ISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

USE OR DISCUSSINE OF D

APPROVED FOR PUBLIC RELEASE

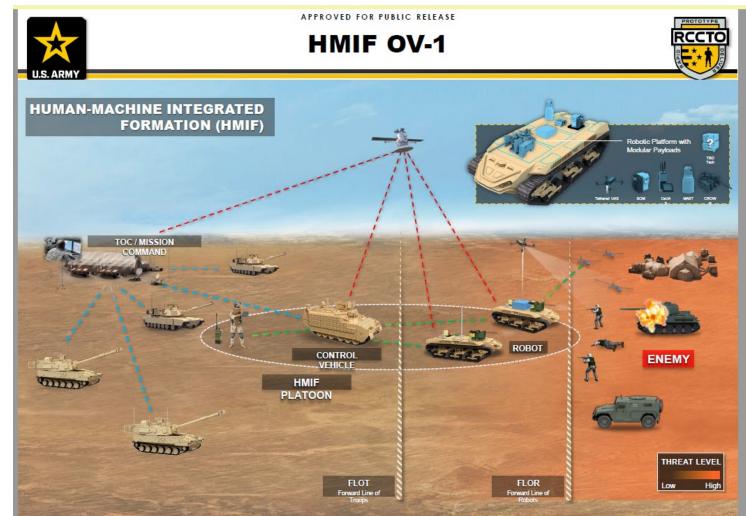
APPROVED FOR PUBLIC RELEASE HMIF Overview

Mission Statement: Human Machine Integrated Formations (HMIF) accelerates the fielding of a robotic formation to leverage machines to offload risk and provide Soldiers with additional information for decision-making for Armored and Infantry Formations.

Description: Provide two HMIF formation sets (Armor and Infantry) for rapid prototyping and leave-behind capability at two U.S. Army Forces Command units for learning, iterative refinement, and operational deployment.

Capabilities:

- 1. One Infantry HMIF Platoon to an Infantry Brigade Combat Team (IBCT).
- 2. One Armored HMIF Platoon to an Armored Brigade Combat Team (ABCT).
- Each formation will include ground and air systems and enablers to aid in the human decision-making process to find, fix, and engage enemy targets.
 Prototype development supports existing and future robotic programs of record (PoR)
- 4. Prototype development supports existing and future robotic programs of record (PoR) by mitigating risk associated with enabling capabilities such as the common architecture, communications and network capabilities, and mitigation of safety risks hindering operational employment.
- In addition to ground platforms, HMIF will be integrated with Unmanned Aircraft System (UAS), enablers, and a variety of payloads from existing PoR or developed and transitioned to PoRs.


"Think big, start small, and go fast!"

RAPIDLY DEVELOP, ACQUIRE, INTEGRATE, AND EQUIP

APPROVED FOR PUBLIC RELEASE

3

USE OR DISCLOSURE OF DATA CONTAINED ON THIS PAGE IS SUBJECT TO RESTRICTIONS ON TITLE PAGE

APPROVED FOR PUBLIC RELEASE

RAPIDLY DEVELOP, ACQUIRE, INTEGRATE, AND EQUIP

HOW TO MEASURE TRUST AND GAIN SOLDIER INSIGHTS: RESEARCH PHASES 2023-2024

Table Top

UAS Live Fire

Live Force on Force

METHOD

Data gathering based on qualitative approaches:

- Interviews
- Surveys
- Observation

METHOD

Data gathering based on quantitative and qualitative approaches:

- Video and Audio recording
- Questionnaires

METHOD

Data gathering based on quantitative and qualitative approaches:

- Video and Audio recording
- **Quantitative Performance Metrics**
- Questionnaires

HOW TO MEASURE TRUST AND GAIN SOLDIER INSIGHTS: RESEARCH PHASES 2024

Virtual Environment

Engineering Integration Event

Live Fire

METHOD

Data gathering based on quantitative and qualitative approaches:

- Interactive virtual environment scenarios
- Motion capture
- Video recording
- · Quantitative performance metrics
- Questionnaires

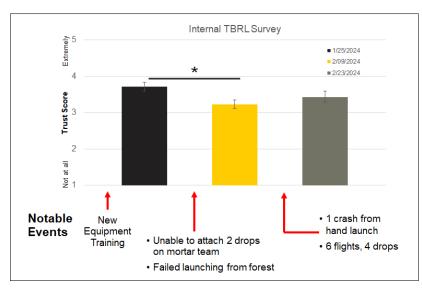
METHOD

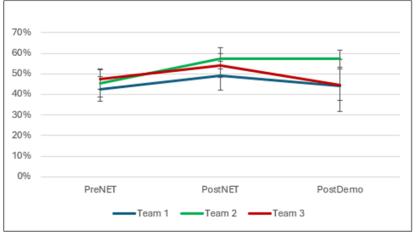
Data gathering based on qualitative approaches:

- Interviews
- Surveys
- Observation

METHOD

Data gathering based on quantitative and qualitative approaches:


- · Video and Audio recording
- Quantitative Performance Metrics
- Focus group discussion
- Interviews
- Questionnaires


TRUST IN AI AND AUTONOMOUS ARMAMENTS

Schaefer Item	Factor							
	1	2	3	4	5	6	7	
Act as part of the team	0.801					0.304		What % of the time will this robot
Work best with a team	0.789							Describe an account of the
Considered part of the team	0.787							Provide accurate fire
Supportive	0.701						-0.335	Be able to pull security
Friendly	0.688							
Clearly communicate	0.68							∥ Betray me*
A good teammate Pleasant	0.631							Fallow vulos of angagament (DOE)
Responsible	0.582			0.305				Follow rules of engagement (ROE)
Work in close proximity with people	0.563			0.300		0.374		Improve lethality of my unit
Openly communicate	0.488		0.413			0.07		
Lifelike	0.418			0.609				Get in my way*
Communicate the people	0.417					0.502		Harm me or my unit*
Provide feedback	0.374					0.531		,
Reliable	0.368						-0.462	Provide my unit with an advantage
Follow directions	0.33						-0.529	
Have errors		0.849						Keep up with the demands of the missio
Malfunction		0.841						Improve mobility of my unit
Require frequent maintenance		0.772						improve mobility of my drift
Function successfully		0.571					-0.382	Require oversight*
Act consistently Perform exactly as instructed		0.319					-0.544 -0.609	
Autonomous		0.304	0.586				-0.009	Improve survivability of my unit
Perform a task better than a novice human user			0.429	0.316				Require an Emergency Stop (E-Stop)*
Protect soldiers			0.397	0.020			-0.452	
Know the difference between friend and foe				0.868				Commit Friendly Fire*
Keep classified information secure				0.769				Need to be overridden*
Conscious				0.767				Need to be overridden.
Possess adequate decision-making capability				0.756				Maintain the fight
Make sensible decisions				0.679			-0.306	1
Tell the truth			-0.523	0.358		0.345		Detect possible targets successfully
Predictable				0.333			-0.738	Identify targets successfully
Unresponsive					0.815			
Incompetent					0.785		0.017	Adhere to fire command (e.g., shift fire)
Led astray by unexpected changes in the environment					-0.493	0.510	0.317	What % of the time will this robot be
Perform many functions at one time Warn Soldiers of potential risks in the environment						0.519 0.582		what % of the time will this robot be
warn Soldiers of potential risks in the environment Provide appropriate information						0.582	-0.497	Broken*
Dependable						0.0	-0.579	
Meet the needs of the mission task							-0.697	Essential to the mission

- Factor 1: Following mission plan and functionality
- Factor 2: Negligence and danger of the device

SOLDIER INSIGHTS FOR ENGINEERS AND DEVELOPERS OF AUTONOMOUS LETHAL WEAPON SYSTEMS

- Lethal Autonomous Weapon Systems Questionnaire (N=88). 15-item free-text questionnaire asking for opinions and insights and recommendations to give guidance to engineers developing fully autonomous lethal armament systems.
- Robotic Assets Questionnaire (N=140). This 10-item Likert scale questionnaire asked Soldiers their level of agreement with statements on the use of robots on the battlefield (not necessarily as weapons).
- Al Confidence Questionnaire (N=22). This 18-item questionnaire asked Soldiers to indicate the percentage level of confidence that an artificial intelligence would need to report for the Soldier to take action. This question was repeated for three different targets (Human, Robotic Quadruped, Vehicle) at different phases across the kill chain.
- Al Reported Confidence Levels Questionnaire (Weapons Tight / Weapons Free) (N=10). This 16-item pilot
 questionnaire asked Soldiers to indicate the percentage level of confidence that an artificial intelligence would
 need to report for the Soldier to take action in several scenarios, under Weapons Tight and Weapons Free rules of
 engagement.

Data collected from several Soldier events from Dec 2023-Sept 2024 (demonstration, force-on-force, engineering integration events, live-fire)

Envisioned Use Cases

Key Findings:

1. Company-Level Deployment:

- AWS are primarily envisioned for deployment at the Company Level or higher.
- Allows for experienced oversight and strategic allocation to platoons or weapon squads as needed.

2. Operational Roles:

- Reconnaissance: Early identification of enemy positions.
- Support-by-Fire: Providing cover during operations.
- Load-Carrying: Assisting with logistics, resupply, and casualty evacuation.
- Route Clearance: Leading through dangerous areas to mitigate risk to soldiers.
- Lethal Deployment: Serving as forward elements to make initial enemy contact.

Insights:

- AWS are seen as force multipliers that enhance unit flexibility and survivability.
- Participants emphasize using AWS in supportive roles rather than replacing human soldiers.

Interaction Methods

Key Findings:

1. Centralized Control Systems:

Single platform for flying, targeting, and firing (e.g., ATAK compatibility).

2. Visual Displays:

Full-screen HUDs and integrated visual feedback systems.

3. Manual Controls:

- Preference for joysticks and console-style controllers.
- Voice commands are viewed skeptically due to battlefield chaos.

4. Reliability:

- Durable and weather-resistant control interfaces.
- Avoiding sensory overload for operators.

Insights:

 Participants favor manual control and visual interfaces over fully automated or voicecontrolled systems. Integrated control platforms reduce complexity and improve situational awareness.

Soldier Guidance

Key Findings:

1. Simple to Use, Not Slow Unit Down, Reliability

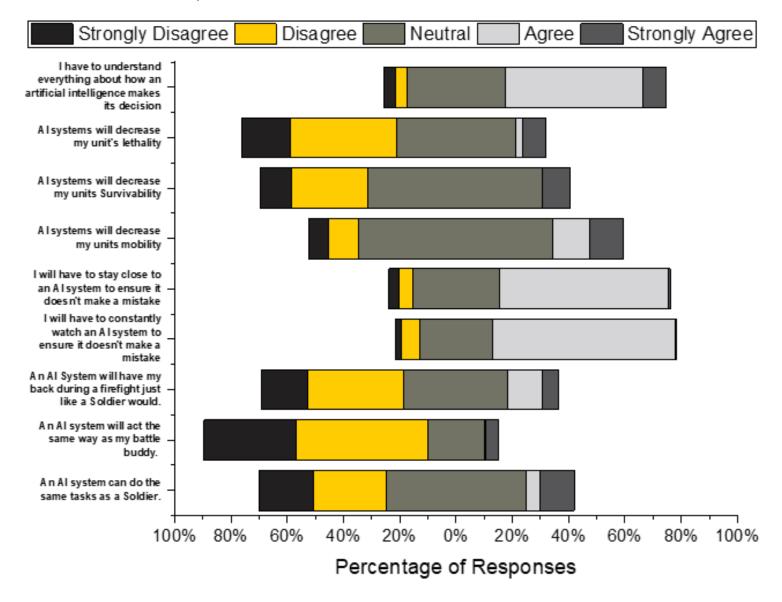
Most frequent responses

2. Controllability

- Kill switch, self-destructs, E-Stops
- Show system status

3. Lethality Control

- Expressed wanting to control lethality
- But control should not be burdensome


Insights:

- "Make sure the thing doesn't kill me"
- "The more the user experience is considered during the design, the better the chances are that Soldiers will like the weapon system"

ROBOTIC ASSET QUESTIONNAIRE RESULTS

AUTONOMOUS LETHAL WEAPON SYSTEMS

G.2. DEFINITIONS.

Unless otherwise noted, these terms and their definitions are for the purpose of this directive.

TERM DEFINITION

autonomous weapon

system

A weapon system that, once activated, can select and engage targets without further intervention by an operator. This includes, but is not limited to, operator-supervised autonomous weapon systems that are designed to allow operators to override operation of the weapon system, but can select and engage targets without further operator input after activation.

What level of risk are US Commanders willing to accept in deploying autonomous systems?

What is the acceptable collateral damage risk for autonomous weapon systems?

Is it more or less acceptable than the risk for a human operator?

Who decides when, where, and how often autonomous weapon systems are deployed?

How are decisions evaluated "right of boom" (i.e., in the wake of an attack)?

What degree of AI explainability should be required?

DoD Directive 3000.09

AUTONOMY IN WEAPON SYSTEMS

Originating Component: Office of the Under Secretary of Defense for Policy

Effective: January 25, 2023

Releasability: Cleared for public release. Available on the Directives Division Website

at https://www.esd.whs.mil/DD/.

Reissues and Cancels: DoD Directive 3000.09, "Autonomy in Weapon Systems," November 21,

2012

Kathleen H. Hicks, Deputy Secretary of Defense Approved by:

Trotti, C., Wetzel, T., Nurkin, T., & Hu, E. (2022). What does the future of autonomous warfare look like? Four critical questions, answered. https://www.atlanticcouncil.org/content-series/automating-the-fight/whatdoes-the-future-of-autonomous-warfare-look-like-four-critical-questionsanswered/

HUMAN SYSTEM INTEGRATION FACTORS RELEVANT TO WARFIGHTER INTERACTIONS WITH AUTONOMOUS LETHAL WEAPON SYSTEMS: REVIEW OF THE LITERATURE FOR TEST AND EVALUATION

FEBRUARY 2025

PREPARED FOR:

Mr. Chris DeLuca OUSD(R&E)

PREPARED BY:

Elizabeth S. Mezzacappa, PhD AFC DEVCOM AC QE&SA Tactical Behavior Research Lab (TBRL)

Table 4. Link Between Operator and System: Controller

LINK BETWEEN OPERATOR AND SYSTEM: CONTROLLER	TESTING ACTIVITIES					
Form Factor	Interview, ratings, performance time during simulation testing					
Physical Layout	Interview, ratings, performance time during simulation testing, ergonomic testing, SUS, TAM					
Effectors (e.g., buttons, joystick, etc.)	Interview, ratings, performance time during simulation testing, ergonomic testing, SUS, TAM					
Screen Layout	Interview, ratings, performance time during simulation testing, SUS, TAM					
Menu Configuration	Interview, ratings, performance time during simulation testing, SUS, TAM					
Psychomotor Limitations	Performance time during simulation testing					
Task Guidance						
What Operator Do	Interview, ratings, performance time during simulation testing					
What System Do	Interview, ratings, performance time during simulation testing					
Activat	Time to activation in simulation testing					
Deactivat	Time to deactivation in simulation testing					
Emergency Sto	pps Time from warning to stop in simulation testing					

Table 1. Requirements relevant to human systems integration with corresponding human systems topic area

3000.09 REQUIREMENT	HUMAN FACTORS CONSIDERATIONS
Describe how the system supports appropriate levels of human judgement.	Explain Soldier-Centered design history, incorporation of subject matter expert guidance and Soldier testing that demonstrates system support for appropriate levels of human judgment. Identify the human factors principles and Soldier testing data incorporated into design.
Describe how the system and Commander and Operator communicate back and forth 1) information 2) source of information 3) how it is conveyed.	Link between Operator and System: Displays, Controller
Describe procedures by which the Commander or Operator can alter the behavior of the system during execution of a mission.	Link between Operator and System: Displays, Controller
Describe how system status is monitored.	Link between Operator and System: Displays
Describe how identification, prioritization, nomination, and engagement information will be provided to the Commander or Operator (either from the system itself or other sources.)	Link between Operator and System: Displays
Describe what and how information related to the possibility of collateral damage.	Link between Operator and System: Displays
Identify the parameters that are pre-set or inputted ahead of time.	Link between Operator and System: Controllers
Identify the parameters that are modifiable or updated during the operation of the armament	Link between Operator and System: Controllers
Identify the timepoint in which decisions by the Commanders and Operators must be made.	Cognitive Alignment
Identify the timeframe in which decisions by the Commanders and Operators must be made.	Cognitive Alignment
Describe human factors considered for configuration of the user interface.	Link between Operator and System: Displays, Controller. Identify the human factors principles and Soldier testing data incorporated into design.
Describe the human factors considered for the overall system design.	CDAO 3, Link between Operator and System: Displays, Controller; Cognitive Alignments; Responses. Identify the human factors principles and Soldier testing data incorporated into design.

CROWS

Tethered

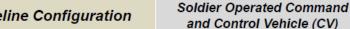
UAS

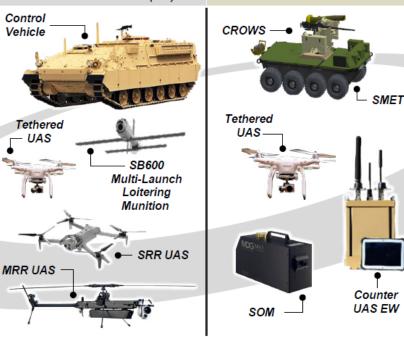
SOM

Baseline Configuration

APPROVED FOR PUBLIC RELEASE

HMIF Increment 1 Baseline Armored and Infantry




HMIF-Armored (HMIF-A)

Soldier Operated Command and Control Vehicle (CV)

HMIF-Infantry (HMIF-I)

Baseline Configuration

NOTE: Full spare set to be available for each configuration

- Aligns Science and Technology from three AFC DEVCOM centers (GVSC, AC, C5ISR) to integrate and harden prototypes.
- · Expands defined architecture and common compute across platforms enabling Modular Open System Approach (MOSA).
- · Enhances communications between HMIF platforms and payloads to Command-and-Control (C2) nodes.
- · Further develops teleoperation of unmanned ground vehicles to enable autonomous behaviors.
- Upgrades to platforms and payloads are tested for safety release to Soldiers.

Counter

UAS EW

· Development of common software defined mounted and dismounted controllers to reduce the number of devices and complexity.

USE OR DISCLOSURE OF DATA CONTAINED ON THIS PAGE IS SUBJECT TO RESTRICTIONS ON TITLE PAGE

RAPIDLY DEVELOP, ACQUIRE, INTEGRATE, AND EQUIP

APPROVED FOR PUBLIC RELEASE

AC - Armaments Center AFC - U.S. Army Futures Command CSISR - Command, Control, Communication, Computers, Cyber, Intelligence, Surveillance and CROWS - Common Remotely Operated Weapon Station
DEVCOM - U.S. Army Combat Capabilities Development Command DUST - Deployable Utility Support Trailer EW - Electronic Warfare GVSC - Ground Vehicle System Center HMIF - Human Machine Integrated Formations MRR - Mid-Range Reconnaissance RCV-L - Robotic Combat Vehicle-Light SOM - Screening Obscuration Module SMET - Small Multipurpose Equipment Transport

Human Machine Integrated Formations (HMIF) Overview & Incremental Roadmap

HSI FOR HMIF AT DEVCOM ARMAMENTS CENTER

- Present
 - Controller Study
 - Crew Configuration
 - Gathered crew evaluation of 3 different configurations
 - Demographics
 - Assignments/Roles, Access to Monitors
 - Crew-System Performance in scenarios
 - NASA-TLX (Workload)
 - Menu Book
 - Critique of planned display and controls for controllers, display
- Planned
 - Soldier Touch Points Planned coinciding with integration events, milestones
 - Cross training issues (gunnery and mobility)
 - Override Functions
 - Display requirements for targeting (communications delay)
 - Compliance with NDAA Human Readiness Levels

2025 NDAA Directs DOD to Report HRL Levels for All Major Programs

Posted January 03, 2025

The 2025 National Defense Authorization Act requires the Department of Defense to review the HFES/ANSI 400 Standard on Human Readiness Levels (HRL) to determine if it can be incorporated into DOD procedures "in order to enhance safety in relation to human factors". In addition, the DOD is to report on the HRL of all major development and acquisition programs. This accomplishment represents the successful culmination of a multi-year effort by HFES and Lewis-Burke Associates to improve the consideration of human factors in defense programs. It is a major win for improved safety and human performance.

THANK YOU.

Elizabeth Mezzacappa, PhD DEVCOM Armaments Center Tactical Behavior Research Laboratory elizabeth.s.mezzacappa.civ@army.mil (520) 684-2830

5 March 2025

U.S. ARMY